diff -r 82a604715919 -r dc85b5b3a532 src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Tue Jan 22 10:50:47 2019 +0000 +++ b/src/HOL/Analysis/Abstract_Topology.thy Tue Jan 22 12:00:16 2019 +0000 @@ -665,6 +665,13 @@ "S \ X derived_set_of S = {} \ subtopology X S = discrete_topology(topspace X \ S)" by (metis Int_lower1 derived_set_of_restrict inf_assoc inf_bot_right subtopology_eq_discrete_topology_eq subtopology_subtopology subtopology_topspace) +lemma subtopology_discrete_topology [simp]: "subtopology (discrete_topology U) S = discrete_topology(U \ S)" +proof - + have "(\T. \Sa. T = Sa \ S \ Sa \ U) = (\Sa. Sa \ U \ Sa \ S)" + by force + then show ?thesis + by (simp add: subtopology_def) (simp add: discrete_topology_def) +qed lemma openin_Int_derived_set_of_subset: "openin X S \ S \ X derived_set_of T \ X derived_set_of (S \ T)" by (auto simp: derived_set_of_def)