diff -r 1eb12389c499 -r dc8c25634697 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Mon Mar 24 21:24:03 2025 +0000 +++ b/src/HOL/Nat.thy Tue Mar 25 09:40:45 2025 +0100 @@ -2300,7 +2300,7 @@ lemma strict_inc_induct [consumes 1, case_names base step]: assumes less: "i < j" and base: "\i. j = Suc i \ P i" - and step: "\i. i < j \ P (Suc i) \ P i" + and step: "\i. Suc i < j \ P (Suc i) \ P i" shows "P i" using less proof (induct "j - i - 1" arbitrary: i) case (0 i) @@ -2318,7 +2318,7 @@ moreover from * have "j - Suc i \ 0" by auto then have "Suc i < j" by (simp add: not_le) ultimately have "P (Suc i)" by (rule Suc.hyps) - with \i < j\ show "P i" by (rule step) + with \Suc i < j\ show "P i" by (rule step) qed lemma zero_induct_lemma: "P k \ (\n. P (Suc n) \ P n) \ P (k - i)"