diff -r c095d3143047 -r dca11678c495 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Mon May 04 17:35:29 2020 +0200 +++ b/src/HOL/Limits.thy Wed May 13 12:55:33 2020 +0200 @@ -1227,6 +1227,33 @@ shows "continuous_on s (\x. (f x) / (g x))" using assms unfolding continuous_on_def by (blast intro: tendsto_divide) +lemma tendsto_power_int [tendsto_intros]: + fixes a :: "'a::real_normed_div_algebra" + assumes f: "(f \ a) F" + and a: "a \ 0" + shows "((\x. power_int (f x) n) \ power_int a n) F" + using assms by (cases n rule: int_cases4) (auto intro!: tendsto_intros simp: power_int_minus) + +lemma continuous_power_int: + fixes f :: "'a::t2_space \ 'b::real_normed_div_algebra" + assumes "continuous F f" + and "f (Lim F (\x. x)) \ 0" + shows "continuous F (\x. power_int (f x) n)" + using assms unfolding continuous_def by (rule tendsto_power_int) + +lemma continuous_at_within_power_int[continuous_intros]: + fixes f :: "'a::t2_space \ 'b::real_normed_div_algebra" + assumes "continuous (at a within s) f" + and "f a \ 0" + shows "continuous (at a within s) (\x. power_int (f x) n)" + using assms unfolding continuous_within by (rule tendsto_power_int) + +lemma continuous_on_power_int [continuous_intros]: + fixes f :: "'a::topological_space \ 'b::real_normed_div_algebra" + assumes "continuous_on s f" and "\x\s. f x \ 0" + shows "continuous_on s (\x. power_int (f x) n)" + using assms unfolding continuous_on_def by (blast intro: tendsto_power_int) + lemma tendsto_sgn [tendsto_intros]: "(f \ l) F \ l \ 0 \ ((\x. sgn (f x)) \ sgn l) F" for l :: "'a::real_normed_vector" unfolding sgn_div_norm by (simp add: tendsto_intros)