diff -r 7cf01ece66e4 -r dcfb33c26f50 src/HOL/Algebra/Exponent.thy --- a/src/HOL/Algebra/Exponent.thy Tue Aug 05 16:21:27 2014 +0200 +++ b/src/HOL/Algebra/Exponent.thy Tue Aug 05 16:58:19 2014 +0200 @@ -249,7 +249,7 @@ apply (simp (no_asm)) (*induction step*) apply (subgoal_tac "(Suc (j+k) choose Suc k) > 0") - prefer 2 apply (simp add: zero_less_binomial_iff, clarify) + prefer 2 apply (simp, clarify) apply (subgoal_tac "exponent p ((Suc (j+k) choose Suc k) * Suc k) = exponent p (Suc k)") txt{*First, use the assumed equation. We simplify the LHS to @@ -260,7 +260,7 @@ @{text Suc_times_binomial_eq} ...*} apply (simp del: bad_Sucs add: Suc_times_binomial_eq [symmetric]) txt{*...then @{text exponent_mult_add} and the quantified premise.*} -apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add) +apply (simp del: bad_Sucs add: exponent_mult_add) done (*The lemma above, with two changes of variables*)