diff -r 5bc338cee4a0 -r dd675800469d src/HOL/Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Wed Oct 09 23:00:52 2019 +0200 +++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Wed Oct 09 14:51:54 2019 +0000 @@ -401,13 +401,13 @@ "\f field_differentiable at z; f z \ 0\ \ deriv (\w. inverse (f w)) z = - deriv f z / f z ^ 2" unfolding DERIV_deriv_iff_field_differentiable[symmetric] - by (safe intro!: DERIV_imp_deriv derivative_eq_intros) (auto simp: divide_simps power2_eq_square) + by (safe intro!: DERIV_imp_deriv derivative_eq_intros) (auto simp: field_split_simps power2_eq_square) lemma deriv_divide [simp]: "\f field_differentiable at z; g field_differentiable at z; g z \ 0\ \ deriv (\w. f w / g w) z = (deriv f z * g z - f z * deriv g z) / g z ^ 2" by (simp add: field_class.field_divide_inverse field_differentiable_inverse) - (simp add: divide_simps power2_eq_square) + (simp add: field_split_simps power2_eq_square) lemma deriv_cdivide_right: "f field_differentiable at z \ deriv (\w. f w / c) z = deriv f z / c"