diff -r 5bc338cee4a0 -r dd675800469d src/HOL/Analysis/Convex.thy --- a/src/HOL/Analysis/Convex.thy Wed Oct 09 23:00:52 2019 +0200 +++ b/src/HOL/Analysis/Convex.thy Wed Oct 09 14:51:54 2019 +0000 @@ -988,7 +988,7 @@ assume "u \ {0<..}" "v \ {0<..}" "u \ v" with assms show "-inverse (u^2) \ -inverse (v^2)" by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all) -qed (insert assms, auto intro!: derivative_eq_intros simp: divide_simps power2_eq_square) +qed (insert assms, auto intro!: derivative_eq_intros simp: field_split_simps power2_eq_square) lemma convex_onD_Icc': assumes "convex_on {x..y} f" "c \ {x..y}" @@ -999,7 +999,7 @@ then have d: "d > 0" by (simp add: d_def) from assms(2) less have A: "0 \ (c - x) / d" "(c - x) / d \ 1" - by (simp_all add: d_def divide_simps) + by (simp_all add: d_def field_split_simps) have "f c = f (x + (c - x) * 1)" by simp also from less have "1 = ((y - x) / d)" @@ -1022,7 +1022,7 @@ then have d: "d > 0" by (simp add: d_def) from assms(2) less have A: "0 \ (y - c) / d" "(y - c) / d \ 1" - by (simp_all add: d_def divide_simps) + by (simp_all add: d_def field_split_simps) have "f c = f (y - (y - c) * 1)" by simp also from less have "1 = ((y - x) / d)"