diff -r 5bc338cee4a0 -r dd675800469d src/HOL/Power.thy --- a/src/HOL/Power.thy Wed Oct 09 23:00:52 2019 +0200 +++ b/src/HOL/Power.thy Wed Oct 09 14:51:54 2019 +0000 @@ -123,8 +123,9 @@ context comm_monoid_mult begin -lemma power_mult_distrib [field_simps]: "(a * b) ^ n = (a ^ n) * (b ^ n)" - by (induct n) (simp_all add: ac_simps) +lemma power_mult_distrib [algebra_simps, algebra_split_simps, field_simps, field_split_simps, divide_simps]: + "(a * b) ^ n = (a ^ n) * (b ^ n)" + by (induction n) (simp_all add: ac_simps) end @@ -378,7 +379,7 @@ begin text \Perhaps these should be simprules.\ -lemma power_inverse [field_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)" +lemma power_inverse [field_simps, field_split_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)" proof (cases "a = 0") case True then show ?thesis by (simp add: power_0_left) @@ -389,7 +390,7 @@ then show ?thesis by simp qed -lemma power_one_over [field_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n" +lemma power_one_over [field_simps, field_split_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n" using power_inverse [of a] by (simp add: divide_inverse) end @@ -397,7 +398,7 @@ context field begin -lemma power_divide [field_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n" +lemma power_divide [field_simps, field_split_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n" by (induct n) simp_all end