diff -r 0d97ef1d6de9 -r de72bbe42190 src/HOL/Probability/Projective_Family.thy --- a/src/HOL/Probability/Projective_Family.thy Thu Nov 22 10:09:54 2012 +0100 +++ b/src/HOL/Probability/Projective_Family.thy Tue Nov 27 11:29:47 2012 +0100 @@ -25,7 +25,7 @@ show "range ?F \ ?J" "(\i. ?F i) = ?\" using `finite J` by (auto intro!: prod_algebraI_finite) { fix i show "emeasure ?P (?F i) \ \" by simp } - show "?J \ Pow ?\" by (auto simp: Pi_iff dest: sets_into_space) + show "?J \ Pow ?\" by (auto simp: Pi_iff dest: sets.sets_into_space) show "sets (\\<^isub>M i\J. M i) = sigma_sets ?\ ?J" "sets ?D = sigma_sets ?\ ?J" using `finite J` by (simp_all add: sets_PiM prod_algebra_eq_finite Pi_iff) @@ -44,7 +44,7 @@ also have "\ = emeasure (Pi\<^isub>M K M) (\\<^isub>E i\K. if i \ J then E i else space (M i))" using E by (simp add: K.measure_times) also have "(\\<^isub>E i\K. if i \ J then E i else space (M i)) = (\f. restrict f J) -` Pi\<^isub>E J E \ (\\<^isub>E i\K. space (M i))" - using `J \ K` sets_into_space E by (force simp: Pi_iff PiE_def split: split_if_asm) + using `J \ K` sets.sets_into_space E by (force simp: Pi_iff PiE_def split: split_if_asm) finally show "emeasure (Pi\<^isub>M J M) X = emeasure ?D X" using X `J \ K` apply (subst emeasure_distr) by (auto intro!: measurable_restrict_subset simp: space_PiM) @@ -93,10 +93,10 @@ shows "emeasure (limP J M P) (Pi\<^isub>E J A) = emeasure (P J) (Pi\<^isub>E J A)" proof - have "Pi\<^isub>E J (restrict A J) \ (\\<^isub>E i\J. space (M i))" - using sets_into_space[OF A] by (auto simp: PiE_iff) blast + using sets.sets_into_space[OF A] by (auto simp: PiE_iff) blast hence "emeasure (limP J M P) (Pi\<^isub>E J A) = emeasure (limP J M P) (prod_emb J M J (Pi\<^isub>E J A))" - using assms(1-3) sets_into_space by (auto simp add: prod_emb_id PiE_def Pi_def) + using assms(1-3) sets.sets_into_space by (auto simp add: prod_emb_id PiE_def Pi_def) also have "\ = emeasure (P J) (Pi\<^isub>E J A)" proof (rule emeasure_extend_measure_Pair[OF limP_def]) show "positive (sets (limP J M P)) (P J)" unfolding positive_def by auto @@ -133,12 +133,12 @@ then obtain E where X: "X = Pi\<^isub>E J E" and E: "\i\J. E i \ sets (M i)" by auto with `finite J` have "X \ sets (limP J M P)" by simp have emb_self: "prod_emb J M J (Pi\<^isub>E J E) = Pi\<^isub>E J E" - using E sets_into_space + using E sets.sets_into_space by (auto intro!: prod_emb_PiE_same_index) show "emeasure (limP J M P) X = emeasure (P J) X" unfolding X using E by (intro emeasure_limP assms) simp -qed (auto simp: Pi_iff dest: sets_into_space intro: Int_stable_PiE) +qed (auto simp: Pi_iff dest: sets.sets_into_space intro: Int_stable_PiE) lemma emeasure_fun_emb[simp]: assumes L: "J \ {}" "J \ L" "finite L" "L \ I" and X: "X \ sets (PiM J M)" @@ -155,7 +155,7 @@ shows "X = Y" proof (rule injective_vimage_restrict) show "X \ (\\<^isub>E i\J. space (M i))" "Y \ (\\<^isub>E i\J. space (M i))" - using sets[THEN sets_into_space] by (auto simp: space_PiM) + using sets[THEN sets.sets_into_space] by (auto simp: space_PiM) have "\i\L. \x. x \ space (M i)" proof fix i assume "i \ L" @@ -219,7 +219,7 @@ fix A assume "A \ prod_algebra I M" with `I \ {}` show "A \ generator" by (auto intro!: generatorI' sets_PiM_I_finite elim!: prod_algebraE) qed - qed (auto simp: generator_def space_PiM[symmetric] intro!: sigma_sets_subset) + qed (auto simp: generator_def space_PiM[symmetric] intro!: sets.sigma_sets_subset) qed lemma generatorI: @@ -317,14 +317,14 @@ have JK_disj: "emb (J \ K) J X \ emb (J \ K) K Y = {}" apply (rule prod_emb_injective[of "J \ K" I]) apply (insert `A \ B = {}` JK J K) - apply (simp_all add: Int prod_emb_Int) + apply (simp_all add: sets.Int prod_emb_Int) done have AB: "A = emb I (J \ K) (emb (J \ K) J X)" "B = emb I (J \ K) (emb (J \ K) K Y)" using J K by simp_all then have "\G (A \ B) = \G (emb I (J \ K) (emb (J \ K) J X \ emb (J \ K) K Y))" by simp also have "\ = emeasure (limP (J \ K) M P) (emb (J \ K) J X \ emb (J \ K) K Y)" - using JK J(1, 4) K(1, 4) by (simp add: \G_eq Un del: prod_emb_Un) + using JK J(1, 4) K(1, 4) by (simp add: \G_eq sets.Un del: prod_emb_Un) also have "\ = \G A + \G B" using J K JK_disj by (simp add: plus_emeasure[symmetric]) finally show "\G (A \ B) = \G A + \G B" .