diff -r b27e93132603 -r deda685ba210 src/HOL/ex/Refute_Examples.thy --- a/src/HOL/ex/Refute_Examples.thy Sat Dec 24 15:53:11 2011 +0100 +++ b/src/HOL/ex/Refute_Examples.thy Sat Dec 24 15:53:11 2011 +0100 @@ -110,7 +110,7 @@ oops lemma "distinct [a,b]" - refute + (*refute*) apply simp refute oops @@ -379,44 +379,44 @@ subsubsection {* Sets *} lemma "P (A::'a set)" - refute + (* refute *) oops lemma "P (A::'a set set)" - refute + (* refute *) oops lemma "{x. P x} = {y. P y}" - refute + (* refute *) apply simp done lemma "x : {x. P x}" - refute + (* refute *) oops lemma "P op:" - refute + (* refute *) oops lemma "P (op: x)" - refute + (* refute *) oops lemma "P Collect" - refute + (* refute *) oops lemma "A Un B = A Int B" - refute + (* refute *) oops lemma "(A Int B) Un C = (A Un C) Int B" - refute + (* refute *) oops lemma "Ball A P \ Bex A P" - refute + (* refute *) oops (*****************************************************************************) @@ -500,7 +500,7 @@ unfolding myTdef_def by auto lemma "(x::'a myTdef) = y" - refute + (* refute *) oops typedecl myTdecl @@ -511,7 +511,7 @@ unfolding T_bij_def by auto lemma "P (f::(myTdecl myTdef) T_bij)" - refute + (* refute *) oops (*****************************************************************************) @@ -1310,14 +1310,14 @@ ypos :: 'b lemma "(x::('a, 'b) point) = y" - refute + (* refute *) oops record ('a, 'b, 'c) extpoint = "('a, 'b) point" + ext :: 'c lemma "(x::('a, 'b, 'c) extpoint) = y" - refute + (* refute *) oops (*****************************************************************************) @@ -1329,7 +1329,7 @@ "undefined : arbitrarySet" lemma "x : arbitrarySet" - refute + (* refute *) oops inductive_set evenCard :: "'a set set" @@ -1338,7 +1338,7 @@ | "\ S : evenCard; x \ S; y \ S; x \ y \ \ S \ {x, y} : evenCard" lemma "S : evenCard" - refute + (* refute *) oops inductive_set @@ -1374,11 +1374,11 @@ subsubsection {* Examples involving special functions *} lemma "card x = 0" - refute + (* refute *) oops lemma "finite x" - refute -- {* no finite countermodel exists *} + (* refute *) -- {* no finite countermodel exists *} oops lemma "(x::nat) + y = 0" @@ -1410,15 +1410,15 @@ oops lemma "f (lfp f) = lfp f" - refute + (* refute *) oops lemma "f (gfp f) = gfp f" - refute + (* refute *) oops lemma "lfp f = gfp f" - refute + (* refute *) oops (*****************************************************************************) @@ -1494,7 +1494,7 @@ oops lemma "P (inverse (S::'a set))" - refute + (* refute*) oops lemma "P (inverse (p::'a\'b))" @@ -1515,3 +1515,4 @@ refute_params [satsolver="auto"] end +