diff -r 4127b89f48ab -r df28ead1cf19 src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Fri Jul 10 12:55:06 2009 -0400 +++ b/src/HOL/Library/Formal_Power_Series.thy Tue Jul 14 20:58:53 2009 -0400 @@ -2514,7 +2514,7 @@ proof- {fix n have "?l$n = ?r $ n" - apply (auto simp add: E_def field_simps power_Suc[symmetric]simp del: fact_Suc of_nat_Suc power_Suc) + apply (auto simp add: E_def field_simps power_Suc[symmetric]simp del: fact_Suc_nat of_nat_Suc power_Suc) by (simp add: of_nat_mult ring_simps)} then show ?thesis by (simp add: fps_eq_iff) qed @@ -2530,8 +2530,8 @@ apply (induct n) apply simp unfolding th - using fact_gt_zero - apply (simp add: field_simps del: of_nat_Suc fact.simps) + using fact_gt_zero_nat + apply (simp add: field_simps del: of_nat_Suc fact_Suc_nat) apply (drule sym) by (simp add: ring_simps of_nat_mult power_Suc)} note th' = this @@ -2697,7 +2697,7 @@ also have "\ = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))" using en by (simp add: fps_sin_def) also have "\ = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))" - unfolding fact_Suc of_nat_mult + unfolding fact_Suc_nat of_nat_mult by (simp add: field_simps del: of_nat_add of_nat_Suc) also have "\ = (- 1)^(n div 2) *c^Suc n / of_nat (fact n)" by (simp add: field_simps del: of_nat_add of_nat_Suc) @@ -2721,7 +2721,7 @@ also have "\ = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))" using en by (simp add: fps_cos_def) also have "\ = (- 1)^((n + 1) div 2)*c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))" - unfolding fact_Suc of_nat_mult + unfolding fact_Suc_nat of_nat_mult by (simp add: field_simps del: of_nat_add of_nat_Suc) also have "\ = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)" by (simp add: field_simps del: of_nat_add of_nat_Suc) @@ -2747,9 +2747,6 @@ finally show ?thesis . qed -lemma fact_1 [simp]: "fact 1 = 1" -unfolding One_nat_def fact_Suc by simp - lemma divide_eq_iff: "a \ (0::'a::field) \ x / a = y \ x = y * a" by auto @@ -2766,7 +2763,7 @@ "fps_sin c $ (n + 2) = - (c * c * fps_sin c $ n / (of_nat(n+1) * of_nat(n+2)))" unfolding fps_sin_def apply (cases n, simp) -apply (simp add: divide_eq_iff eq_divide_iff del: of_nat_Suc fact_Suc) +apply (simp add: divide_eq_iff eq_divide_iff del: of_nat_Suc fact_Suc_nat) apply (simp add: of_nat_mult del: of_nat_Suc mult_Suc) done @@ -2779,7 +2776,7 @@ lemma fps_cos_nth_add_2: "fps_cos c $ (n + 2) = - (c * c * fps_cos c $ n / (of_nat(n+1) * of_nat(n+2)))" unfolding fps_cos_def -apply (simp add: divide_eq_iff eq_divide_iff del: of_nat_Suc fact_Suc) +apply (simp add: divide_eq_iff eq_divide_iff del: of_nat_Suc fact_Suc_nat) apply (simp add: of_nat_mult del: of_nat_Suc mult_Suc) done