diff -r e13e70f32407 -r e01015e49041 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Tue Dec 29 22:41:22 2015 +0100 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Tue Dec 29 23:04:53 2015 +0100 @@ -1957,7 +1957,7 @@ qed qed qed - then obtain g where g: "\x\s. (\n. f n x) ----> g x" .. + then obtain g where g: "\x\s. (\n. f n x) \ g x" .. have lem2: "\e>0. \N. \n\N. \x\s. \y\s. norm ((f n x - f n y) - (g x - g y)) \ e * norm (x - y)" proof (rule, rule) fix e :: real