diff -r e13e70f32407 -r e01015e49041 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Dec 29 22:41:22 2015 +0100 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Tue Dec 29 23:04:53 2015 +0100 @@ -4580,7 +4580,7 @@ by (auto intro!: triangle3) qed qed - then obtain s where s: "i ----> s" + then obtain s where s: "i \ s" using convergent_eq_cauchy[symmetric] by blast show ?thesis unfolding integrable_on_def has_integral @@ -10201,8 +10201,8 @@ fixes f :: "nat \ 'a::euclidean_space \ real" assumes f: "\k. (f k has_integral x k) s" assumes "\k x. x \ s \ f k x \ f (Suc k) x" - assumes "\x. x \ s \ (\k. f k x) ----> g x" - assumes "x ----> x'" + assumes "\x. x \ s \ (\k. f k x) \ g x" + assumes "x \ x'" shows "(g has_integral x') s" proof - have x_eq: "x = (\i. integral s (f i))" @@ -10210,13 +10210,13 @@ then have x: "{integral s (f k) |k. True} = range x" by auto - have "g integrable_on s \ (\k. integral s (f k)) ----> integral s g" + have "g integrable_on s \ (\k. integral s (f k)) \ integral s g" proof (intro monotone_convergence_increasing allI ballI assms) show "bounded {integral s (f k) |k. True}" unfolding x by (rule convergent_imp_bounded) fact qed (auto intro: f) moreover then have "integral s g = x'" - by (intro LIMSEQ_unique[OF _ \x ----> x'\]) (simp add: x_eq) + by (intro LIMSEQ_unique[OF _ \x \ x'\]) (simp add: x_eq) ultimately show ?thesis by (simp add: has_integral_integral) qed @@ -12087,7 +12087,7 @@ show "Inf {f j x |j. k \ j} \ Inf {f j x |j. Suc k \ j}" by (intro cInf_superset_mono) (auto simp: \x\s\) - show "(\k::nat. Inf {f j x |j. k \ j}) ----> g x" + show "(\k::nat. Inf {f j x |j. k \ j}) \ g x" proof (rule LIMSEQ_I, goal_cases) case r: (1 r) then have "0 'n::euclidean_space \ real" assumes "\k. (f k has_integral y k) s" "h integrable_on s" - "\k. \x\s. norm (f k x) \ h x" "\x\s. (\k. f k x) ----> g x" - and x: "y ----> x" + "\k. \x\s. norm (f k x) \ h x" "\x\s. (\k. f k x) \ g x" + and x: "y \ x" shows "(g has_integral x) s" proof - have int_f: "\k. (f k) integrable_on s" @@ -12193,9 +12193,9 @@ by (intro integrable_integral dominated_convergence[OF int_f assms(2)]) fact+ moreover have "integral s g = x" proof (rule LIMSEQ_unique) - show "(\i. integral s (f i)) ----> x" + show "(\i. integral s (f i)) \ x" using integral_unique[OF assms(1)] x by simp - show "(\i. integral s (f i)) ----> integral s g" + show "(\i. integral s (f i)) \ integral s g" by (intro dominated_convergence[OF int_f assms(2)]) fact+ qed ultimately show ?thesis