diff -r e13e70f32407 -r e01015e49041 src/HOL/Probability/Set_Integral.thy --- a/src/HOL/Probability/Set_Integral.thy Tue Dec 29 22:41:22 2015 +0100 +++ b/src/HOL/Probability/Set_Integral.thy Tue Dec 29 23:04:53 2015 +0100 @@ -327,7 +327,7 @@ assumes "\i. A i \ sets M" "mono A" assumes nneg: "\x i. x \ A i \ 0 \ f x" and intgbl: "\i::nat. set_integrable M (A i) f" - and lim: "(\i::nat. LINT x:A i|M. f x) ----> l" + and lim: "(\i::nat. LINT x:A i|M. f x) \ l" shows "set_integrable M (\i. A i) f" apply (rule integrable_monotone_convergence[where f = "\i::nat. \x. indicator (A i) x *\<^sub>R f x" and x = l]) apply (rule intgbl) @@ -336,7 +336,7 @@ using \mono A\ apply (auto simp: mono_def nneg split: split_indicator) [] proof (rule AE_I2) { fix x assume "x \ space M" - show "(\i. indicator (A i) x *\<^sub>R f x) ----> indicator (\i. A i) x *\<^sub>R f x" + show "(\i. indicator (A i) x *\<^sub>R f x) \ indicator (\i. A i) x *\<^sub>R f x" proof cases assume "\i. x \ A i" then guess i .. @@ -409,7 +409,7 @@ fixes f :: "_ \ 'a :: {banach, second_countable_topology}" assumes [measurable]: "\i. A i \ sets M" and A: "incseq A" and intgbl: "set_integrable M (\i. A i) f" - shows "(\i. LINT x:(A i)|M. f x) ----> LINT x:(\i. A i)|M. f x" + shows "(\i. LINT x:(A i)|M. f x) \ LINT x:(\i. A i)|M. f x" proof (intro integral_dominated_convergence[where w="\x. indicator (\i. A i) x *\<^sub>R norm (f x)"]) have int_A: "\i. set_integrable M (A i) f" using intgbl by (rule set_integrable_subset) auto @@ -418,10 +418,10 @@ using intgbl integrable_norm[OF intgbl] by auto { fix x i assume "x \ A i" - with A have "(\xa. indicator (A xa) x::real) ----> 1 \ (\xa. 1::real) ----> 1" + with A have "(\xa. indicator (A xa) x::real) \ 1 \ (\xa. 1::real) \ 1" by (intro filterlim_cong refl) (fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _ i]) } - then show "AE x in M. (\i. indicator (A i) x *\<^sub>R f x) ----> indicator (\i. A i) x *\<^sub>R f x" + then show "AE x in M. (\i. indicator (A i) x *\<^sub>R f x) \ indicator (\i. A i) x *\<^sub>R f x" by (intro AE_I2 tendsto_intros) (auto split: split_indicator) qed (auto split: split_indicator) @@ -430,7 +430,7 @@ fixes f :: "_ \ 'a :: {banach, second_countable_topology}" assumes [measurable]: "\i. A i \ sets M" and A: "decseq A" and int0: "set_integrable M (A 0) f" - shows "(\i::nat. LINT x:(A i)|M. f x) ----> LINT x:(\i. A i)|M. f x" + shows "(\i::nat. LINT x:(A i)|M. f x) \ LINT x:(\i. A i)|M. f x" proof (rule integral_dominated_convergence) have int_A: "\i. set_integrable M (A i) f" using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def) @@ -443,10 +443,10 @@ show "\i. AE x in M. norm (indicator (A i) x *\<^sub>R f x) \ indicator (A 0) x *\<^sub>R norm (f x)" using A by (auto split: split_indicator simp: decseq_def) { fix x i assume "x \ space M" "x \ A i" - with A have "(\i. indicator (A i) x::real) ----> 0 \ (\i. 0::real) ----> 0" + with A have "(\i. indicator (A i) x::real) \ 0 \ (\i. 0::real) \ 0" by (intro filterlim_cong refl) (auto split: split_indicator simp: eventually_sequentially decseq_def intro!: exI[of _ i]) } - then show "AE x in M. (\i. indicator (A i) x *\<^sub>R f x) ----> indicator (\i. A i) x *\<^sub>R f x" + then show "AE x in M. (\i. indicator (A i) x *\<^sub>R f x) \ indicator (\i. A i) x *\<^sub>R f x" by (intro AE_I2 tendsto_intros) (auto split: split_indicator) qed