diff -r 523124691b3a -r e0b46cd72414 src/HOL/RealPow.thy --- a/src/HOL/RealPow.thy Tue Feb 23 07:45:54 2010 -0800 +++ b/src/HOL/RealPow.thy Tue Feb 23 10:37:25 2010 -0800 @@ -49,11 +49,6 @@ apply auto done -lemma realpow_real_of_nat: "real (m::nat) ^ n = real (m ^ n)" -apply (induct "n") -apply (auto simp add: real_of_nat_one real_of_nat_mult) -done - lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)" apply (induct "n") apply (auto simp add: zero_less_mult_iff) @@ -65,21 +60,6 @@ by (rule power_le_imp_le_base) -subsection{*Literal Arithmetic Involving Powers, Type @{typ real}*} - -lemma real_of_int_power: "real (x::int) ^ n = real (x ^ n)" -apply (induct "n") -apply (simp_all add: nat_mult_distrib) -done -declare real_of_int_power [symmetric, simp] - -lemma power_real_number_of: - "(number_of v :: real) ^ n = real ((number_of v :: int) ^ n)" -by (simp only: real_number_of [symmetric] real_of_int_power) - -declare power_real_number_of [of _ "number_of w", standard, simp] - - subsection{* Squares of Reals *} lemma real_two_squares_add_zero_iff [simp]: