diff -r efbdfcaa6258 -r e12779b8f5b6 src/HOL/Data_Structures/Trie_Fun.thy --- a/src/HOL/Data_Structures/Trie_Fun.thy Fri May 10 11:20:02 2019 +0200 +++ b/src/HOL/Data_Structures/Trie_Fun.thy Sat May 11 15:27:11 2019 +0200 @@ -8,33 +8,33 @@ text \A trie where each node maps a key to sub-tries via a function. Nice abstract model. Not efficient because of the function space.\ -datatype 'a trie = Lf | Nd bool "'a \ 'a trie option" +datatype 'a trie = Nd bool "'a \ 'a trie option" fun isin :: "'a trie \ 'a list \ bool" where -"isin Lf xs = False" | "isin (Nd b m) [] = b" | "isin (Nd b m) (k # xs) = (case m k of None \ False | Some t \ isin t xs)" fun insert :: "('a::linorder) list \ 'a trie \ 'a trie" where -"insert [] Lf = Nd True (\x. None)" | "insert [] (Nd b m) = Nd True m" | -"insert (x#xs) Lf = Nd False ((\x. None)(x := Some(insert xs Lf)))" | "insert (x#xs) (Nd b m) = - Nd b (m(x := Some(insert xs (case m x of None \ Lf | Some t \ t))))" + Nd b (m(x := Some(insert xs (case m x of None \ Nd False (\_. None) | Some t \ t))))" fun delete :: "('a::linorder) list \ 'a trie \ 'a trie" where -"delete xs Lf = Lf" | "delete [] (Nd b m) = Nd False m" | "delete (x#xs) (Nd b m) = Nd b (case m x of None \ m | Some t \ m(x := Some(delete xs t)))" +text \The actual definition of \set\ is a bit cryptic but canonical, to enable +primrec to prove termination:\ + primrec set :: "'a trie \ 'a list set" where -"set Lf = {}" | "set (Nd b m) = (if b then {[]} else {}) \ (\a. case (map_option set o m) a of None \ {} | Some t \ (#) a ` t)" +text \This is the more human-readable version:\ + lemma set_Nd: "set (Nd b m) = (if b then {[]} else {}) \ @@ -50,11 +50,7 @@ proof(induction xs t rule: insert.induct) case 1 thus ?case by simp next - case 2 thus ?case by simp -next - case 3 thus ?case by simp (subst set_eq_iff, simp) -next - case 4 + case 2 thus ?case apply(simp) apply(subst set_eq_iff) @@ -65,11 +61,9 @@ lemma set_delete: "set (delete xs t) = set t - {xs}" proof(induction xs t rule: delete.induct) - case 1 thus ?case by simp + case 1 thus ?case by (force split: option.splits) next - case 2 thus ?case by (force split: option.splits) -next - case 3 + case 2 thus ?case apply (auto simp add: image_iff split!: if_splits option.splits) apply blast @@ -79,7 +73,7 @@ qed interpretation S: Set -where empty = Lf and isin = isin and insert = insert and delete = delete +where empty = "Nd False (\_. None)" and isin = isin and insert = insert and delete = delete and set = set and invar = "\_. True" proof (standard, goal_cases) case 1 show ?case by (simp)