diff -r 6b2c0681ef28 -r e138d96ed083 src/HOL/Rings.thy --- a/src/HOL/Rings.thy Thu Nov 23 13:00:00 2017 +0000 +++ b/src/HOL/Rings.thy Thu Nov 23 17:03:20 2017 +0000 @@ -1699,17 +1699,15 @@ using div_mult_mod_eq [of a a] by simp lemma dvd_imp_mod_0 [simp]: - assumes "a dvd b" - shows "b mod a = 0" - using assms minus_div_mult_eq_mod [of b a] by simp + "b mod a = 0" if "a dvd b" + using that minus_div_mult_eq_mod [of b a] by simp lemma mod_0_imp_dvd: - assumes "a mod b = 0" - shows "b dvd a" + "b dvd a" if "a mod b = 0" proof - - have "b dvd ((a div b) * b)" by simp + have "b dvd (a div b) * b" by simp also have "(a div b) * b = a" - using div_mult_mod_eq [of a b] by (simp add: assms) + using div_mult_mod_eq [of a b] by (simp add: that) finally show ?thesis . qed