diff -r 3ff8c79a9e2f -r e2f0176149d0 src/HOL/Library/Dlist_Cset.thy --- a/src/HOL/Library/Dlist_Cset.thy Fri Mar 30 17:25:34 2012 +0200 +++ b/src/HOL/Library/Dlist_Cset.thy Fri Mar 30 18:56:02 2012 +0200 @@ -1,133 +0,0 @@ -(* Author: Florian Haftmann, TU Muenchen *) - -header {* Canonical implementation of sets by distinct lists *} - -theory Dlist_Cset -imports Dlist Cset -begin - -definition Set :: "'a dlist \ 'a Cset.set" where - "Set dxs = Cset.set (list_of_dlist dxs)" - -definition Coset :: "'a dlist \ 'a Cset.set" where - "Coset dxs = Cset.coset (list_of_dlist dxs)" - -code_datatype Set Coset - -lemma Set_Dlist [simp]: - "Set (Dlist xs) = Cset.set xs" - by (rule Cset.set_eqI) (simp add: Set_def) - -lemma Coset_Dlist [simp]: - "Coset (Dlist xs) = Cset.coset xs" - by (rule Cset.set_eqI) (simp add: Coset_def) - -lemma member_Set [simp]: - "Cset.member (Set dxs) = List.member (list_of_dlist dxs)" - by (simp add: Set_def fun_eq_iff List.member_def) - -lemma member_Coset [simp]: - "Cset.member (Coset dxs) = Not \ List.member (list_of_dlist dxs)" - by (simp add: Coset_def fun_eq_iff List.member_def) - -lemma Set_dlist_of_list [code]: - "Cset.set xs = Set (dlist_of_list xs)" - by (rule Cset.set_eqI) simp - -lemma Coset_dlist_of_list [code]: - "Cset.coset xs = Coset (dlist_of_list xs)" - by (rule Cset.set_eqI) simp - -lemma is_empty_Set [code]: - "Cset.is_empty (Set dxs) \ Dlist.null dxs" - by (simp add: Dlist.null_def List.null_def Set_def) - -lemma bot_code [code]: - "bot = Set Dlist.empty" - by (simp add: empty_def) - -lemma top_code [code]: - "top = Coset Dlist.empty" - by (simp add: empty_def Cset.coset_def) - -lemma insert_code [code]: - "Cset.insert x (Set dxs) = Set (Dlist.insert x dxs)" - "Cset.insert x (Coset dxs) = Coset (Dlist.remove x dxs)" - by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def) - -lemma remove_code [code]: - "Cset.remove x (Set dxs) = Set (Dlist.remove x dxs)" - "Cset.remove x (Coset dxs) = Coset (Dlist.insert x dxs)" - by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def Compl_insert) - -lemma member_code [code]: - "Cset.member (Set dxs) = Dlist.member dxs" - "Cset.member (Coset dxs) = Not \ Dlist.member dxs" - by (simp_all add: List.member_def member_def fun_eq_iff Dlist.member_def) - -lemma compl_code [code]: - "- Set dxs = Coset dxs" - "- Coset dxs = Set dxs" - by (rule Cset.set_eqI, simp add: fun_eq_iff List.member_def Set_def Coset_def)+ - -lemma map_code [code]: - "Cset.map f (Set dxs) = Set (Dlist.map f dxs)" - by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def) - -lemma filter_code [code]: - "Cset.filter f (Set dxs) = Set (Dlist.filter f dxs)" - by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def) - -lemma forall_Set [code]: - "Cset.forall P (Set xs) \ list_all P (list_of_dlist xs)" - by (simp add: Set_def list_all_iff) - -lemma exists_Set [code]: - "Cset.exists P (Set xs) \ list_ex P (list_of_dlist xs)" - by (simp add: Set_def list_ex_iff) - -lemma card_code [code]: - "Cset.card (Set dxs) = Dlist.length dxs" - by (simp add: length_def Set_def distinct_card) - -lemma inter_code [code]: - "inf A (Set xs) = Set (Dlist.filter (Cset.member A) xs)" - "inf A (Coset xs) = Dlist.foldr Cset.remove xs A" - by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter) - -lemma subtract_code [code]: - "A - Set xs = Dlist.foldr Cset.remove xs A" - "A - Coset xs = Set (Dlist.filter (Cset.member A) xs)" - by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter) - -lemma union_code [code]: - "sup (Set xs) A = Dlist.foldr Cset.insert xs A" - "sup (Coset xs) A = Coset (Dlist.filter (Not \ Cset.member A) xs)" - by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter) - -context complete_lattice -begin - -lemma Infimum_code [code]: - "Infimum (Set As) = Dlist.foldr inf As top" - by (simp only: Set_def Infimum_inf foldr_def inf.commute) - -lemma Supremum_code [code]: - "Supremum (Set As) = Dlist.foldr sup As bot" - by (simp only: Set_def Supremum_sup foldr_def sup.commute) - -end - -declare Cset.single_code [code] - -lemma bind_set [code]: - "Cset.bind (Dlist_Cset.Set xs) f = fold (sup \ f) (list_of_dlist xs) Cset.empty" - by (simp add: Cset.bind_set Set_def) -hide_fact (open) bind_set - -lemma pred_of_cset_set [code]: - "pred_of_cset (Dlist_Cset.Set xs) = foldr sup (map Predicate.single (list_of_dlist xs)) bot" - by (simp add: Cset.pred_of_cset_set Dlist_Cset.Set_def) -hide_fact (open) pred_of_cset_set - -end