diff -r f2094906e491 -r e44d86131648 src/ZF/Int.thy --- a/src/ZF/Int.thy Tue Sep 27 13:34:54 2022 +0200 +++ b/src/ZF/Int.thy Tue Sep 27 16:51:35 2022 +0100 @@ -9,50 +9,50 @@ definition intrel :: i where - "intrel == {p \ (nat*nat)*(nat*nat). + "intrel \ {p \ (nat*nat)*(nat*nat). \x1 y1 x2 y2. p=<,> & x1#+y2 = x2#+y1}" definition int :: i where - "int == (nat*nat)//intrel" + "int \ (nat*nat)//intrel" definition int_of :: "i=>i" \ \coercion from nat to int\ (\$# _\ [80] 80) where - "$# m == intrel `` {}" + "$# m \ intrel `` {}" definition intify :: "i=>i" \ \coercion from ANYTHING to int\ where - "intify(m) == if m \ int then m else $#0" + "intify(m) \ if m \ int then m else $#0" definition raw_zminus :: "i=>i" where - "raw_zminus(z) == \\z. intrel``{}" + "raw_zminus(z) \ \\z. intrel``{}" definition zminus :: "i=>i" (\$- _\ [80] 80) where - "$- z == raw_zminus (intify(z))" + "$- z \ raw_zminus (intify(z))" definition znegative :: "i=>o" where - "znegative(z) == \x y. xnat & \z" + "znegative(z) \ \x y. xnat & \z" definition iszero :: "i=>o" where - "iszero(z) == z = $# 0" + "iszero(z) \ z = $# 0" definition raw_nat_of :: "i=>i" where - "raw_nat_of(z) == natify (\\z. x#-y)" + "raw_nat_of(z) \ natify (\\z. x#-y)" definition nat_of :: "i=>i" where - "nat_of(z) == raw_nat_of (intify(z))" + "nat_of(z) \ raw_nat_of (intify(z))" definition zmagnitude :: "i=>i" where \ \could be replaced by an absolute value function from int to int?\ - "zmagnitude(z) == - THE m. m\nat & ((~ znegative(z) & z = $# m) | + "zmagnitude(z) \ + THE m. m\nat & ((\ znegative(z) & z = $# m) | (znegative(z) & $- z = $# m))" definition @@ -60,35 +60,35 @@ (*Cannot use UN here or in zadd because of the form of congruent2. Perhaps a "curried" or even polymorphic congruent predicate would be better.*) - "raw_zmult(z1,z2) == + "raw_zmult(z1,z2) \ \p1\z1. \p2\z2. split(%x1 y1. split(%x2 y2. intrel``{}, p2), p1)" definition zmult :: "[i,i]=>i" (infixl \$*\ 70) where - "z1 $* z2 == raw_zmult (intify(z1),intify(z2))" + "z1 $* z2 \ raw_zmult (intify(z1),intify(z2))" definition raw_zadd :: "[i,i]=>i" where - "raw_zadd (z1, z2) == + "raw_zadd (z1, z2) \ \z1\z1. \z2\z2. let =z1; =z2 in intrel``{}" definition zadd :: "[i,i]=>i" (infixl \$+\ 65) where - "z1 $+ z2 == raw_zadd (intify(z1),intify(z2))" + "z1 $+ z2 \ raw_zadd (intify(z1),intify(z2))" definition zdiff :: "[i,i]=>i" (infixl \$-\ 65) where - "z1 $- z2 == z1 $+ zminus(z2)" + "z1 $- z2 \ z1 $+ zminus(z2)" definition zless :: "[i,i]=>o" (infixl \$<\ 50) where - "z1 $< z2 == znegative(z1 $- z2)" + "z1 $< z2 \ znegative(z1 $- z2)" definition zle :: "[i,i]=>o" (infixl \$\\ 50) where - "z1 $\ z2 == z1 $< z2 | intify(z1)=intify(z2)" + "z1 $\ z2 \ z1 $< z2 | intify(z1)=intify(z2)" declare quotientE [elim!] @@ -103,19 +103,19 @@ by (simp add: intrel_def) lemma intrelI [intro!]: - "[| x1#+y2 = x2#+y1; x1\nat; y1\nat; x2\nat; y2\nat |] - ==> <,>: intrel" + "\x1#+y2 = x2#+y1; x1\nat; y1\nat; x2\nat; y2\nat\ + \ <,>: intrel" by (simp add: intrel_def) lemma intrelE [elim!]: - "[| p \ intrel; - !!x1 y1 x2 y2. [| p = <,>; x1#+y2 = x2#+y1; - x1\nat; y1\nat; x2\nat; y2\nat |] ==> Q |] - ==> Q" + "\p \ intrel; + \x1 y1 x2 y2. \p = <,>; x1#+y2 = x2#+y1; + x1\nat; y1\nat; x2\nat; y2\nat\ \ Q\ + \ Q" by (simp add: intrel_def, blast) lemma int_trans_lemma: - "[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2 |] ==> x1 #+ y3 = x3 #+ y1" + "\x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2\ \ x1 #+ y3 = x3 #+ y1" apply (rule sym) apply (erule add_left_cancel)+ apply (simp_all (no_asm_simp)) @@ -126,7 +126,7 @@ apply (fast elim!: sym int_trans_lemma) done -lemma image_intrel_int: "[| m\nat; n\nat |] ==> intrel `` {} \ int" +lemma image_intrel_int: "\m\nat; n\nat\ \ intrel `` {} \ int" by (simp add: int_def) declare equiv_intrel [THEN eq_equiv_class_iff, simp] @@ -142,7 +142,7 @@ lemma int_of_eq [iff]: "($# m = $# n) \ natify(m)=natify(n)" by (simp add: int_of_def) -lemma int_of_inject: "[| $#m = $#n; m\nat; n\nat |] ==> m=n" +lemma int_of_inject: "\$#m = $#n; m\nat; n\nat\ \ m=n" by (drule int_of_eq [THEN iffD1], auto) @@ -151,7 +151,7 @@ lemma intify_in_int [iff,TC]: "intify(x) \ int" by (simp add: intify_def) -lemma intify_ident [simp]: "n \ int ==> intify(n) = n" +lemma intify_ident [simp]: "n \ int \ intify(n) = n" by (simp add: intify_def) @@ -211,7 +211,7 @@ lemma zminus_congruent: "(%. intrel``{}) respects intrel" by (auto simp add: congruent_def add_ac) -lemma raw_zminus_type: "z \ int ==> raw_zminus(z) \ int" +lemma raw_zminus_type: "z \ int \ raw_zminus(z) \ int" apply (simp add: int_def raw_zminus_def) apply (typecheck add: UN_equiv_class_type [OF equiv_intrel zminus_congruent]) done @@ -220,31 +220,31 @@ by (simp add: zminus_def raw_zminus_type) lemma raw_zminus_inject: - "[| raw_zminus(z) = raw_zminus(w); z \ int; w \ int |] ==> z=w" + "\raw_zminus(z) = raw_zminus(w); z \ int; w \ int\ \ z=w" apply (simp add: int_def raw_zminus_def) apply (erule UN_equiv_class_inject [OF equiv_intrel zminus_congruent], safe) apply (auto dest: eq_intrelD simp add: add_ac) done -lemma zminus_inject_intify [dest!]: "$-z = $-w ==> intify(z) = intify(w)" +lemma zminus_inject_intify [dest!]: "$-z = $-w \ intify(z) = intify(w)" apply (simp add: zminus_def) apply (blast dest!: raw_zminus_inject) done -lemma zminus_inject: "[| $-z = $-w; z \ int; w \ int |] ==> z=w" +lemma zminus_inject: "\$-z = $-w; z \ int; w \ int\ \ z=w" by auto lemma raw_zminus: - "[| x\nat; y\nat |] ==> raw_zminus(intrel``{}) = intrel `` {}" + "\x\nat; y\nat\ \ raw_zminus(intrel``{}) = intrel `` {}" apply (simp add: raw_zminus_def UN_equiv_class [OF equiv_intrel zminus_congruent]) done lemma zminus: - "[| x\nat; y\nat |] - ==> $- (intrel``{}) = intrel `` {}" + "\x\nat; y\nat\ + \ $- (intrel``{}) = intrel `` {}" by (simp add: zminus_def raw_zminus image_intrel_int) -lemma raw_zminus_zminus: "z \ int ==> raw_zminus (raw_zminus(z)) = z" +lemma raw_zminus_zminus: "z \ int \ raw_zminus (raw_zminus(z)) = z" by (auto simp add: int_def raw_zminus) lemma zminus_zminus_intify [simp]: "$- ($- z) = intify(z)" @@ -253,13 +253,13 @@ lemma zminus_int0 [simp]: "$- ($#0) = $#0" by (simp add: int_of_def zminus) -lemma zminus_zminus: "z \ int ==> $- ($- z) = z" +lemma zminus_zminus: "z \ int \ $- ($- z) = z" by simp subsection\\<^term>\znegative\: the test for negative integers\ -lemma znegative: "[| x\nat; y\nat |] ==> znegative(intrel``{}) \ xx\nat; y\nat\ \ znegative(intrel``{}) \ x znegative($# n)" by (simp add: znegative int_of_def) lemma znegative_zminus_int_of [simp]: "znegative($- $# succ(n))" by (simp add: znegative int_of_def zminus natify_succ) -lemma not_znegative_imp_zero: "~ znegative($- $# n) ==> natify(n)=0" +lemma not_znegative_imp_zero: "\ znegative($- $# n) \ natify(n)=0" by (simp add: znegative int_of_def zminus Ord_0_lt_iff [THEN iff_sym]) @@ -286,7 +286,7 @@ by (auto simp add: congruent_def split: nat_diff_split) lemma raw_nat_of: - "[| x\nat; y\nat |] ==> raw_nat_of(intrel``{}) = x#-y" + "\x\nat; y\nat\ \ raw_nat_of(intrel``{}) = x#-y" by (simp add: raw_nat_of_def UN_equiv_class [OF equiv_intrel nat_of_congruent]) lemma raw_nat_of_int_of: "raw_nat_of($# n) = natify(n)" @@ -306,7 +306,7 @@ lemma zmagnitude_int_of [simp]: "zmagnitude($# n) = natify(n)" by (auto simp add: zmagnitude_def int_of_eq) -lemma natify_int_of_eq: "natify(x)=n ==> $#x = $# n" +lemma natify_int_of_eq: "natify(x)=n \ $#x = $# n" apply (drule sym) apply (simp (no_asm_simp) add: int_of_eq) done @@ -324,7 +324,7 @@ done lemma not_zneg_int_of: - "[| z \ int; ~ znegative(z) |] ==> \n\nat. z = $# n" + "\z \ int; \ znegative(z)\ \ \n\nat. z = $# n" apply (auto simp add: int_def znegative int_of_def not_lt_iff_le) apply (rename_tac x y) apply (rule_tac x="x#-y" in bexI) @@ -332,38 +332,38 @@ done lemma not_zneg_mag [simp]: - "[| z \ int; ~ znegative(z) |] ==> $# (zmagnitude(z)) = z" + "\z \ int; \ znegative(z)\ \ $# (zmagnitude(z)) = z" by (drule not_zneg_int_of, auto) lemma zneg_int_of: - "[| znegative(z); z \ int |] ==> \n\nat. z = $- ($# succ(n))" + "\znegative(z); z \ int\ \ \n\nat. z = $- ($# succ(n))" by (auto simp add: int_def znegative zminus int_of_def dest!: less_imp_succ_add) lemma zneg_mag [simp]: - "[| znegative(z); z \ int |] ==> $# (zmagnitude(z)) = $- z" + "\znegative(z); z \ int\ \ $# (zmagnitude(z)) = $- z" by (drule zneg_int_of, auto) -lemma int_cases: "z \ int ==> \n\nat. z = $# n | z = $- ($# succ(n))" +lemma int_cases: "z \ int \ \n\nat. z = $# n | z = $- ($# succ(n))" apply (case_tac "znegative (z) ") prefer 2 apply (blast dest: not_zneg_mag sym) apply (blast dest: zneg_int_of) done lemma not_zneg_raw_nat_of: - "[| ~ znegative(z); z \ int |] ==> $# (raw_nat_of(z)) = z" + "\\ znegative(z); z \ int\ \ $# (raw_nat_of(z)) = z" apply (drule not_zneg_int_of) apply (auto simp add: raw_nat_of_type raw_nat_of_int_of) done lemma not_zneg_nat_of_intify: - "~ znegative(intify(z)) ==> $# (nat_of(z)) = intify(z)" + "\ znegative(intify(z)) \ $# (nat_of(z)) = intify(z)" by (simp (no_asm_simp) add: nat_of_def not_zneg_raw_nat_of) -lemma not_zneg_nat_of: "[| ~ znegative(z); z \ int |] ==> $# (nat_of(z)) = z" +lemma not_zneg_nat_of: "\\ znegative(z); z \ int\ \ $# (nat_of(z)) = z" apply (simp (no_asm_simp) add: not_zneg_nat_of_intify) done -lemma zneg_nat_of [simp]: "znegative(intify(z)) ==> nat_of(z) = 0" +lemma zneg_nat_of [simp]: "znegative(intify(z)) \ nat_of(z) = 0" apply (subgoal_tac "intify(z) \ int") apply (simp add: int_def) apply (auto simp add: znegative nat_of_def raw_nat_of @@ -389,7 +389,7 @@ apply (simp (no_asm_simp) add: add_assoc [symmetric]) done -lemma raw_zadd_type: "[| z \ int; w \ int |] ==> raw_zadd(z,w) \ int" +lemma raw_zadd_type: "\z \ int; w \ int\ \ raw_zadd(z,w) \ int" apply (simp add: int_def raw_zadd_def) apply (rule UN_equiv_class_type2 [OF equiv_intrel zadd_congruent2], assumption+) apply (simp add: Let_def) @@ -399,8 +399,8 @@ by (simp add: zadd_def raw_zadd_type) lemma raw_zadd: - "[| x1\nat; y1\nat; x2\nat; y2\nat |] - ==> raw_zadd (intrel``{}, intrel``{}) = + "\x1\nat; y1\nat; x2\nat; y2\nat\ + \ raw_zadd (intrel``{}, intrel``{}) = intrel `` {}" apply (simp add: raw_zadd_def UN_equiv_class2 [OF equiv_intrel equiv_intrel zadd_congruent2]) @@ -408,37 +408,37 @@ done lemma zadd: - "[| x1\nat; y1\nat; x2\nat; y2\nat |] - ==> (intrel``{}) $+ (intrel``{}) = + "\x1\nat; y1\nat; x2\nat; y2\nat\ + \ (intrel``{}) $+ (intrel``{}) = intrel `` {}" by (simp add: zadd_def raw_zadd image_intrel_int) -lemma raw_zadd_int0: "z \ int ==> raw_zadd ($#0,z) = z" +lemma raw_zadd_int0: "z \ int \ raw_zadd ($#0,z) = z" by (auto simp add: int_def int_of_def raw_zadd) lemma zadd_int0_intify [simp]: "$#0 $+ z = intify(z)" by (simp add: zadd_def raw_zadd_int0) -lemma zadd_int0: "z \ int ==> $#0 $+ z = z" +lemma zadd_int0: "z \ int \ $#0 $+ z = z" by simp lemma raw_zminus_zadd_distrib: - "[| z \ int; w \ int |] ==> $- raw_zadd(z,w) = raw_zadd($- z, $- w)" + "\z \ int; w \ int\ \ $- raw_zadd(z,w) = raw_zadd($- z, $- w)" by (auto simp add: zminus raw_zadd int_def) lemma zminus_zadd_distrib [simp]: "$- (z $+ w) = $- z $+ $- w" by (simp add: zadd_def raw_zminus_zadd_distrib) lemma raw_zadd_commute: - "[| z \ int; w \ int |] ==> raw_zadd(z,w) = raw_zadd(w,z)" + "\z \ int; w \ int\ \ raw_zadd(z,w) = raw_zadd(w,z)" by (auto simp add: raw_zadd add_ac int_def) lemma zadd_commute: "z $+ w = w $+ z" by (simp add: zadd_def raw_zadd_commute) lemma raw_zadd_assoc: - "[| z1: int; z2: int; z3: int |] - ==> raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))" + "\z1: int; z2: int; z3: int\ + \ raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))" by (auto simp add: int_def raw_zadd add_assoc) lemma zadd_assoc: "(z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)" @@ -460,13 +460,13 @@ by (simp add: int_of_add [symmetric] natify_succ) lemma int_of_diff: - "[| m\nat; n \ m |] ==> $# (m #- n) = ($#m) $- ($#n)" + "\m\nat; n \ m\ \ $# (m #- n) = ($#m) $- ($#n)" apply (simp add: int_of_def zdiff_def) apply (frule lt_nat_in_nat) apply (simp_all add: zadd zminus add_diff_inverse2) done -lemma raw_zadd_zminus_inverse: "z \ int ==> raw_zadd (z, $- z) = $#0" +lemma raw_zadd_zminus_inverse: "z \ int \ raw_zadd (z, $- z) = $#0" by (auto simp add: int_def int_of_def zminus raw_zadd add_commute) lemma zadd_zminus_inverse [simp]: "z $+ ($- z) = $#0" @@ -481,7 +481,7 @@ lemma zadd_int0_right_intify [simp]: "z $+ $#0 = intify(z)" by (rule trans [OF zadd_commute zadd_int0_intify]) -lemma zadd_int0_right: "z \ int ==> z $+ $#0 = z" +lemma zadd_int0_right: "z \ int \ z $+ $#0 = z" by simp @@ -502,7 +502,7 @@ done -lemma raw_zmult_type: "[| z \ int; w \ int |] ==> raw_zmult(z,w) \ int" +lemma raw_zmult_type: "\z \ int; w \ int\ \ raw_zmult(z,w) \ int" apply (simp add: int_def raw_zmult_def) apply (rule UN_equiv_class_type2 [OF equiv_intrel zmult_congruent2], assumption+) apply (simp add: Let_def) @@ -512,42 +512,42 @@ by (simp add: zmult_def raw_zmult_type) lemma raw_zmult: - "[| x1\nat; y1\nat; x2\nat; y2\nat |] - ==> raw_zmult(intrel``{}, intrel``{}) = + "\x1\nat; y1\nat; x2\nat; y2\nat\ + \ raw_zmult(intrel``{}, intrel``{}) = intrel `` {}" by (simp add: raw_zmult_def UN_equiv_class2 [OF equiv_intrel equiv_intrel zmult_congruent2]) lemma zmult: - "[| x1\nat; y1\nat; x2\nat; y2\nat |] - ==> (intrel``{}) $* (intrel``{}) = + "\x1\nat; y1\nat; x2\nat; y2\nat\ + \ (intrel``{}) $* (intrel``{}) = intrel `` {}" by (simp add: zmult_def raw_zmult image_intrel_int) -lemma raw_zmult_int0: "z \ int ==> raw_zmult ($#0,z) = $#0" +lemma raw_zmult_int0: "z \ int \ raw_zmult ($#0,z) = $#0" by (auto simp add: int_def int_of_def raw_zmult) lemma zmult_int0 [simp]: "$#0 $* z = $#0" by (simp add: zmult_def raw_zmult_int0) -lemma raw_zmult_int1: "z \ int ==> raw_zmult ($#1,z) = z" +lemma raw_zmult_int1: "z \ int \ raw_zmult ($#1,z) = z" by (auto simp add: int_def int_of_def raw_zmult) lemma zmult_int1_intify [simp]: "$#1 $* z = intify(z)" by (simp add: zmult_def raw_zmult_int1) -lemma zmult_int1: "z \ int ==> $#1 $* z = z" +lemma zmult_int1: "z \ int \ $#1 $* z = z" by simp lemma raw_zmult_commute: - "[| z \ int; w \ int |] ==> raw_zmult(z,w) = raw_zmult(w,z)" + "\z \ int; w \ int\ \ raw_zmult(z,w) = raw_zmult(w,z)" by (auto simp add: int_def raw_zmult add_ac mult_ac) lemma zmult_commute: "z $* w = w $* z" by (simp add: zmult_def raw_zmult_commute) lemma raw_zmult_zminus: - "[| z \ int; w \ int |] ==> raw_zmult($- z, w) = $- raw_zmult(z, w)" + "\z \ int; w \ int\ \ raw_zmult($- z, w) = $- raw_zmult(z, w)" by (auto simp add: int_def zminus raw_zmult add_ac) lemma zmult_zminus [simp]: "($- z) $* w = $- (z $* w)" @@ -559,8 +559,8 @@ by (simp add: zmult_commute [of w]) lemma raw_zmult_assoc: - "[| z1: int; z2: int; z3: int |] - ==> raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))" + "\z1: int; z2: int; z3: int\ + \ raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))" by (auto simp add: int_def raw_zmult add_mult_distrib_left add_ac mult_ac) lemma zmult_assoc: "(z1 $* z2) $* z3 = z1 $* (z2 $* z3)" @@ -576,8 +576,8 @@ lemmas zmult_ac = zmult_assoc zmult_commute zmult_left_commute lemma raw_zadd_zmult_distrib: - "[| z1: int; z2: int; w \ int |] - ==> raw_zmult(raw_zadd(z1,z2), w) = + "\z1: int; z2: int; w \ int\ + \ raw_zmult(raw_zadd(z1,z2), w) = raw_zadd (raw_zmult(z1,w), raw_zmult(z2,w))" by (auto simp add: int_def raw_zadd raw_zmult add_mult_distrib_left add_ac mult_ac) @@ -620,7 +620,7 @@ (*"Less than" is a linear ordering*) lemma zless_linear_lemma: - "[| z \ int; w \ int |] ==> z$z \ int; w \ int\ \ z$ (z$ int; y \ int |] ==> (x \ y) \ (x $< y | y $< x)" +lemma neq_iff_zless: "\x \ int; y \ int\ \ (x \ y) \ (x $< y | y $< x)" by (cut_tac z = x and w = y in zless_linear, auto) -lemma zless_imp_intify_neq: "w $< z ==> intify(w) \ intify(z)" +lemma zless_imp_intify_neq: "w $< z \ intify(w) \ intify(z)" apply auto -apply (subgoal_tac "~ (intify (w) $< intify (z))") +apply (subgoal_tac "\ (intify (w) $< intify (z))") apply (erule_tac [2] ssubst) apply (simp (no_asm_use)) apply auto @@ -648,7 +648,7 @@ (*This lemma allows direct proofs of other <-properties*) lemma zless_imp_succ_zadd_lemma: - "[| w $< z; w \ int; z \ int |] ==> (\n\nat. z = w $+ $#(succ(n)))" + "\w $< z; w \ int; z \ int\ \ (\n\nat. z = w $+ $#(succ(n)))" apply (simp add: zless_def znegative_def zdiff_def int_def) apply (auto dest!: less_imp_succ_add simp add: zadd zminus int_of_def) apply (rule_tac x = k in bexI) @@ -656,14 +656,14 @@ done lemma zless_imp_succ_zadd: - "w $< z ==> (\n\nat. w $+ $#(succ(n)) = intify(z))" + "w $< z \ (\n\nat. w $+ $#(succ(n)) = intify(z))" apply (subgoal_tac "intify (w) $< intify (z) ") apply (drule_tac w = "intify (w) " in zless_imp_succ_zadd_lemma) apply auto done lemma zless_succ_zadd_lemma: - "w \ int ==> w $< w $+ $# succ(n)" + "w \ int \ w $< w $+ $# succ(n)" apply (simp add: zless_def znegative_def zdiff_def int_def) apply (auto simp add: zadd zminus int_of_def image_iff) apply (rule_tac x = 0 in exI, auto) @@ -680,13 +680,13 @@ apply (cut_tac w = w and n = n in zless_succ_zadd, auto) done -lemma zless_int_of [simp]: "[| m\nat; n\nat |] ==> ($#m $< $#n) \ (mm\nat; n\nat\ \ ($#m $< $#n) \ (m int; y \ int; z \ int |] ==> x $< z" + "\x $< y; y $< z; x \ int; y \ int; z \ int\ \ x $< z" apply (simp add: zless_def znegative_def zdiff_def int_def) apply (auto simp add: zadd zminus image_iff) apply (rename_tac x1 x2 y1 y2) @@ -699,19 +699,19 @@ apply auto done -lemma zless_trans [trans]: "[| x $< y; y $< z |] ==> x $< z" +lemma zless_trans [trans]: "\x $< y; y $< z\ \ x $< z" apply (subgoal_tac "intify (x) $< intify (z) ") apply (rule_tac [2] y = "intify (y) " in zless_trans_lemma) apply auto done -lemma zless_not_sym: "z $< w ==> ~ (w $< z)" +lemma zless_not_sym: "z $< w \ \ (w $< z)" by (blast dest: zless_trans) -(* [| z $< w; ~ P ==> w $< z |] ==> P *) +(* \z $< w; \ P \ w $< z\ \ P *) lemmas zless_asym = zless_not_sym [THEN swap] -lemma zless_imp_zle: "z $< w ==> z $\ w" +lemma zless_imp_zle: "z $< w \ z $\ w" by (simp add: zle_def) lemma zle_linear: "z $\ w | w $\ z" @@ -725,48 +725,48 @@ lemma zle_refl: "z $\ z" by (simp add: zle_def) -lemma zle_eq_refl: "x=y ==> x $\ y" +lemma zle_eq_refl: "x=y \ x $\ y" by (simp add: zle_refl) -lemma zle_anti_sym_intify: "[| x $\ y; y $\ x |] ==> intify(x) = intify(y)" +lemma zle_anti_sym_intify: "\x $\ y; y $\ x\ \ intify(x) = intify(y)" apply (simp add: zle_def, auto) apply (blast dest: zless_trans) done -lemma zle_anti_sym: "[| x $\ y; y $\ x; x \ int; y \ int |] ==> x=y" +lemma zle_anti_sym: "\x $\ y; y $\ x; x \ int; y \ int\ \ x=y" by (drule zle_anti_sym_intify, auto) lemma zle_trans_lemma: - "[| x \ int; y \ int; z \ int; x $\ y; y $\ z |] ==> x $\ z" + "\x \ int; y \ int; z \ int; x $\ y; y $\ z\ \ x $\ z" apply (simp add: zle_def, auto) apply (blast intro: zless_trans) done -lemma zle_trans [trans]: "[| x $\ y; y $\ z |] ==> x $\ z" +lemma zle_trans [trans]: "\x $\ y; y $\ z\ \ x $\ z" apply (subgoal_tac "intify (x) $\ intify (z) ") apply (rule_tac [2] y = "intify (y) " in zle_trans_lemma) apply auto done -lemma zle_zless_trans [trans]: "[| i $\ j; j $< k |] ==> i $< k" +lemma zle_zless_trans [trans]: "\i $\ j; j $< k\ \ i $< k" apply (auto simp add: zle_def) apply (blast intro: zless_trans) apply (simp add: zless_def zdiff_def zadd_def) done -lemma zless_zle_trans [trans]: "[| i $< j; j $\ k |] ==> i $< k" +lemma zless_zle_trans [trans]: "\i $< j; j $\ k\ \ i $< k" apply (auto simp add: zle_def) apply (blast intro: zless_trans) apply (simp add: zless_def zdiff_def zminus_def) done -lemma not_zless_iff_zle: "~ (z $< w) \ (w $\ z)" +lemma not_zless_iff_zle: "\ (z $< w) \ (w $\ z)" apply (cut_tac z = z and w = w in zless_linear) apply (auto dest: zless_trans simp add: zle_def) apply (auto dest!: zless_imp_intify_neq) done -lemma not_zle_iff_zless: "~ (z $\ w) \ (w $< z)" +lemma not_zle_iff_zless: "\ (z $\ w) \ (w $< z)" by (simp add: not_zless_iff_zle [THEN iff_sym]) @@ -784,21 +784,21 @@ lemma zless_zdiff_iff: "(x $< z$-y) \ (x $+ y $< z)" by (simp add: zless_def zdiff_def zadd_ac) -lemma zdiff_eq_iff: "[| x \ int; z \ int |] ==> (x$-y = z) \ (x = z $+ y)" +lemma zdiff_eq_iff: "\x \ int; z \ int\ \ (x$-y = z) \ (x = z $+ y)" by (auto simp add: zdiff_def zadd_assoc) -lemma eq_zdiff_iff: "[| x \ int; z \ int |] ==> (x = z$-y) \ (x $+ y = z)" +lemma eq_zdiff_iff: "\x \ int; z \ int\ \ (x = z$-y) \ (x $+ y = z)" by (auto simp add: zdiff_def zadd_assoc) lemma zdiff_zle_iff_lemma: - "[| x \ int; z \ int |] ==> (x$-y $\ z) \ (x $\ z $+ y)" + "\x \ int; z \ int\ \ (x$-y $\ z) \ (x $\ z $+ y)" by (auto simp add: zle_def zdiff_eq_iff zdiff_zless_iff) lemma zdiff_zle_iff: "(x$-y $\ z) \ (x $\ z $+ y)" by (cut_tac zdiff_zle_iff_lemma [OF intify_in_int intify_in_int], simp) lemma zle_zdiff_iff_lemma: - "[| x \ int; z \ int |] ==>(x $\ z$-y) \ (x $+ y $\ z)" + "\x \ int; z \ int\ \(x $\ z$-y) \ (x $+ y $\ z)" apply (auto simp add: zle_def zdiff_eq_iff zless_zdiff_iff) apply (auto simp add: zdiff_def zadd_assoc) done @@ -820,7 +820,7 @@ of the CancelNumerals Simprocs\ lemma zadd_left_cancel: - "[| w \ int; w': int |] ==> (z $+ w' = z $+ w) \ (w' = w)" + "\w \ int; w': int\ \ (z $+ w' = z $+ w) \ (w' = w)" apply safe apply (drule_tac t = "%x. x $+ ($-z) " in subst_context) apply (simp add: zadd_ac) @@ -833,7 +833,7 @@ done lemma zadd_right_cancel: - "[| w \ int; w': int |] ==> (w' $+ z = w $+ z) \ (w' = w)" + "\w \ int; w': int\ \ (w' $+ z = w $+ z) \ (w' = w)" apply safe apply (drule_tac t = "%x. x $+ ($-z) " in subst_context) apply (simp add: zadd_ac) @@ -858,22 +858,22 @@ by (simp add: zadd_commute [of z] zadd_right_cancel_zle) -(*"v $\ w ==> v$+z $\ w$+z"*) +(*"v $\ w \ v$+z $\ w$+z"*) lemmas zadd_zless_mono1 = zadd_right_cancel_zless [THEN iffD2] -(*"v $\ w ==> z$+v $\ z$+w"*) +(*"v $\ w \ z$+v $\ z$+w"*) lemmas zadd_zless_mono2 = zadd_left_cancel_zless [THEN iffD2] -(*"v $\ w ==> v$+z $\ w$+z"*) +(*"v $\ w \ v$+z $\ w$+z"*) lemmas zadd_zle_mono1 = zadd_right_cancel_zle [THEN iffD2] -(*"v $\ w ==> z$+v $\ z$+w"*) +(*"v $\ w \ z$+v $\ z$+w"*) lemmas zadd_zle_mono2 = zadd_left_cancel_zle [THEN iffD2] -lemma zadd_zle_mono: "[| w' $\ w; z' $\ z |] ==> w' $+ z' $\ w $+ z" +lemma zadd_zle_mono: "\w' $\ w; z' $\ z\ \ w' $+ z' $\ w $+ z" by (erule zadd_zle_mono1 [THEN zle_trans], simp) -lemma zadd_zless_mono: "[| w' $< w; z' $\ z |] ==> w' $+ z' $< w $+ z" +lemma zadd_zless_mono: "\w' $< w; z' $\ z\ \ w' $+ z' $< w $+ z" by (erule zadd_zless_mono1 [THEN zless_zle_trans], simp) @@ -887,10 +887,10 @@ subsubsection\More inequality lemmas\ -lemma equation_zminus: "[| x \ int; y \ int |] ==> (x = $- y) \ (y = $- x)" +lemma equation_zminus: "\x \ int; y \ int\ \ (x = $- y) \ (y = $- x)" by auto -lemma zminus_equation: "[| x \ int; y \ int |] ==> ($- x = y) \ ($- y = x)" +lemma zminus_equation: "\x \ int; y \ int\ \ ($- x = y) \ ($- y = x)" by auto lemma equation_zminus_intify: "(intify(x) = $- y) \ (intify(y) = $- x)"