diff -r b45c8e35231e -r e4fa45571bab src/HOL/SET_Protocol/Message_SET.thy --- a/src/HOL/SET_Protocol/Message_SET.thy Tue Oct 18 15:59:15 2022 +0100 +++ b/src/HOL/SET_Protocol/Message_SET.thy Wed Oct 19 13:39:00 2022 +0100 @@ -19,9 +19,9 @@ by blast text\Collapses redundant cases in the huge protocol proofs\ -lemmas disj_simps = disj_comms disj_left_absorb disj_assoc +lemmas disj_simps = disj_comms disj_left_absorb disj_assoc -text\Effective with assumptions like \<^term>\K \ range pubK\ and +text\Effective with assumptions like \<^term>\K \ range pubK\ and \<^term>\K \ invKey`range pubK\\ lemma notin_image_iff: "(y \ f`I) = (\i\I. f i \ y)" by blast @@ -85,7 +85,7 @@ text\The function is indeed injective\ lemma inj_nat_of_agent: "inj nat_of_agent" -by (simp add: nat_of_agent_def inj_on_def curry_def prod_encode_eq split: agent.split) +by (simp add: nat_of_agent_def inj_on_def curry_def prod_encode_eq split: agent.split) definition @@ -620,16 +620,6 @@ apply (erule analz.induct, blast+) done -(*These two are obsolete (with a single Spy) but cost little to prove...*) -lemma analz_UN_analz_lemma: - "X\ analz (\i\A. analz (H i)) ==> X\ analz (\i\A. H i)" -apply (erule analz.induct) -apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ -done - -lemma analz_UN_analz [simp]: "analz (\i\A. analz (H i)) = analz (\i\A. H i)" -by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) - subsection\Inductive relation "synth"\ @@ -760,7 +750,7 @@ done lemma Fake_parts_insert_in_Un: - "[|Z \ parts (insert X H); X \ synth (analz H)|] + "[|Z \ parts (insert X H); X \ synth (analz H)|] ==> Z \ synth (analz H) \ parts H" by (blast dest: Fake_parts_insert [THEN subsetD, dest])