diff -r c3b6e69da386 -r e5104b436ea1 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Sat Feb 26 20:40:45 2011 +0100 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Mon Feb 28 22:10:57 2011 +0100 @@ -6,7 +6,6 @@ theory Integration imports Derivative - "~~/src/HOL/Decision_Procs/Dense_Linear_Order" "~~/src/HOL/Library/Indicator_Function" begin @@ -14,8 +13,6 @@ declare [[smt_fixed=true]] declare [[smt_oracle=false]] -setup {* Arith_Data.add_tactic "Ferrante-Rackoff" (K FerranteRackoff.dlo_tac) *} - (*declare not_less[simp] not_le[simp]*) lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib @@ -2879,7 +2876,7 @@ lemma operative_1_lt: assumes "monoidal opp" shows "operative opp f \ ((\a b. b \ a \ f {a..b::real} = neutral opp) \ (\a b c. a < c \ c < b \ opp (f{a..c})(f{c..b}) = f {a..b}))" - unfolding operative_def content_eq_0 DIM_real less_one dnf_simps(39,41) Eucl_real_simps + unfolding operative_def content_eq_0 DIM_real less_one simp_thms(39,41) Eucl_real_simps (* The dnf_simps simplify "\ x. x= _ \ _" and "\k. k = _ \ _" *) proof safe fix a b c::"real" assume as:"\a b c. f {a..b} = opp (f ({a..b} \ {x. x \ c})) (f ({a..b} \ {x. c \ x}))" "a < c" "c < b" @@ -4354,7 +4351,7 @@ "(\p. p tagged_division_of {a..b} \ d fine p \ norm (setsum (\(x,k). content k *\<^sub>R f x) p - integral({a..b}) f) < e)" and p:"p tagged_partial_division_of {a..b}" "d fine p" shows "norm(setsum (\(x,k). content k *\<^sub>R f x - integral k f) p) \ e" (is "?x \ e") -proof- { presume "\k. 0 ?x \ e + k" thus ?thesis by arith } +proof- { presume "\k. 0 ?x \ e + k" thus ?thesis by (blast intro: field_le_epsilon) } fix k::real assume k:"k>0" note p' = tagged_partial_division_ofD[OF p(1)] have "\snd ` p \ {a..b}" using p'(3) by fastsimp note partial_division_of_tagged_division[OF p(1)] this