diff -r ef8ed6adcb38 -r e5434b822a96 src/HOL/NumberTheory/IntPrimes.thy --- a/src/HOL/NumberTheory/IntPrimes.thy Thu May 30 10:12:11 2002 +0200 +++ b/src/HOL/NumberTheory/IntPrimes.thy Thu May 30 10:12:52 2002 +0200 @@ -264,12 +264,10 @@ lemma zgcd_non_0: "0 < n ==> zgcd (m, n) = zgcd (n, m mod n)" apply (frule_tac b = n and a = m in pos_mod_sign) apply (simp add: zgcd_def zabs_def nat_mod_distrib) - apply (cut_tac a = "-m" and b = n in zmod_zminus1_eq_if) apply (auto simp add: gcd_non_0 nat_mod_distrib [symmetric] zmod_zminus1_eq_if) apply (frule_tac a = m in pos_mod_bound) - apply (simp add: nat_diff_distrib) - apply (rule gcd_diff2) - apply (simp add: nat_le_eq_zle) + apply (simp add: nat_diff_distrib gcd_diff2 nat_le_eq_zle) + apply (simp add: gcd_non_0 nat_mod_distrib [symmetric]) done lemma zgcd_eq: "zgcd (m, n) = zgcd (n, m mod n)" @@ -707,7 +705,6 @@ prefer 2 apply (frule_tac a = "r'" in pos_mod_sign) apply auto - apply arith apply (rule exI) apply (rule exI) apply (subst xzgcda.simps) @@ -727,7 +724,6 @@ prefer 2 apply (frule_tac a = "r'" in pos_mod_sign) apply auto - apply arith apply (erule_tac P = "xzgcda ?u = ?v" in rev_mp) apply (subst xzgcda.simps) apply auto