diff -r 3406cd754dd2 -r e6928fc2332a src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Thu Jul 21 21:56:24 2011 +0200 +++ b/src/HOL/Library/Extended_Real.thy Thu Jul 21 22:47:13 2011 +0200 @@ -1338,33 +1338,6 @@ by (cases e) auto qed -lemma (in complete_linorder) Sup_eq_top_iff: -- "FIXME move" - "Sup A = top \ (\xi\A. x < i)" -proof - assume *: "Sup A = top" - show "(\xi\A. x < i)" unfolding * [symmetric] - proof (intro allI impI) - fix x assume "x < Sup A" then show "\i\A. x < i" - unfolding less_Sup_iff by auto - qed -next - assume *: "\xi\A. x < i" - show "Sup A = top" - proof (rule ccontr) - assume "Sup A \ top" - with top_greatest [of "Sup A"] - have "Sup A < top" unfolding le_less by auto - then have "Sup A < Sup A" - using * unfolding less_Sup_iff by auto - then show False by auto - qed -qed - -lemma (in complete_linorder) SUP_eq_top_iff: -- "FIXME move" - fixes f :: "'b \ 'a" - shows "(SUP i:A. f i) = top \ (\xi\A. x < f i)" - unfolding SUPR_def Sup_eq_top_iff by auto - lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \" proof - { fix x ::ereal assume "x \ \" @@ -2374,14 +2347,6 @@ abbreviation "limsup \ Limsup sequentially" -lemma (in complete_lattice) less_INFD: - assumes "y < INFI A f"" i \ A" shows "y < f i" -proof - - note `y < INFI A f` - also have "INFI A f \ f i" using `i \ A` by (rule INF_leI) - finally show "y < f i" . -qed - lemma liminf_SUPR_INFI: fixes f :: "nat \ ereal" shows "liminf f = (SUP n. INF m:{n..}. f m)"