diff -r 5e5e6ad3922c -r e6f291cb5810 src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Sat Aug 27 17:26:14 2011 +0200 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Sun Aug 28 09:20:12 2011 -0700 @@ -2191,9 +2191,9 @@ have 3: "\x n. 0 \ f n x - f 0 x" using `mono f` unfolding mono_def le_fun_def by (auto simp: field_simps) have 4: "\x. (\i. f i x - f 0 x) ----> u x - f 0 x" - using lim by (auto intro!: LIMSEQ_diff) + using lim by (auto intro!: tendsto_diff) have 5: "(\i. (\x. f i x - f 0 x \M)) ----> x - integral\<^isup>L M (f 0)" - using f ilim by (auto intro!: LIMSEQ_diff simp: integral_diff) + using f ilim by (auto intro!: tendsto_diff simp: integral_diff) note diff = integral_monotone_convergence_pos[OF 1 2 3 4 5] have "integrable M (\x. (u x - f 0 x) + f 0 x)" using diff(1) f by (rule integral_add(1)) @@ -2329,7 +2329,7 @@ and "(\i. integral\<^isup>L M (u i)) ----> integral\<^isup>L M u'" (is ?lim) proof - { fix x j assume x: "x \ space M" - from u'[OF x] have "(\i. \u i x\) ----> \u' x\" by (rule LIMSEQ_imp_rabs) + from u'[OF x] have "(\i. \u i x\) ----> \u' x\" by (rule tendsto_rabs) from LIMSEQ_le_const2[OF this] have "\u' x\ \ w x" using bound[OF x] by auto } note u'_bound = this @@ -2400,7 +2400,7 @@ unfolding ereal_max_0 proof (rule lim_imp_Liminf[symmetric], unfold lim_ereal) have "(\i. ?diff i x) ----> 2 * w x - \u' x - u' x\" - using u'[OF x] by (safe intro!: LIMSEQ_diff LIMSEQ_const LIMSEQ_imp_rabs) + using u'[OF x] by (safe intro!: tendsto_intros) then show "(\i. max 0 (?diff i x)) ----> max 0 (2 * w x)" by (auto intro!: tendsto_real_max simp add: lim_ereal) qed (rule trivial_limit_sequentially) @@ -2492,7 +2492,7 @@ show "mono ?w'" by (auto simp: mono_def le_fun_def intro!: setsum_mono2) { fix x show "(\n. ?w' n x) ----> ?w x" - using w by (cases "x \ space M") (simp_all add: LIMSEQ_const sums_def) } + using w by (cases "x \ space M") (simp_all add: tendsto_const sums_def) } have *: "\n. integral\<^isup>L M (?w' n) = (\i = 0..< n. (\x. \f i x\ \M))" using borel by (simp add: integral_setsum integrable_abs cong: integral_cong) from abs_sum