diff -r a8e5cefeb3ab -r e72884b2da04 src/HOL/Library/FSet.thy --- a/src/HOL/Library/FSet.thy Sat May 27 23:34:42 2023 +0200 +++ b/src/HOL/Library/FSet.thy Sun May 28 12:14:40 2023 +0200 @@ -243,49 +243,49 @@ lemma fset_eq_iff[no_atp]: "(A = B) = (\x. (x |\| A) = (x |\| B))" by (rule set_eq_iff[Transfer.transferred]) -lemma fBallI[intro!]: "(\x. x |\| A \ P x) \ fBall A P" +lemma fBallI[no_atp]: "(\x. x |\| A \ P x) \ fBall A P" by (rule ballI[Transfer.transferred]) -lemma fbspec[dest?]: "fBall A P \ x |\| A \ P x" +lemma fbspec[no_atp]: "fBall A P \ x |\| A \ P x" by (rule bspec[Transfer.transferred]) -lemma fBallE[elim]: "fBall A P \ (P x \ Q) \ (x |\| A \ Q) \ Q" +lemma fBallE[no_atp]: "fBall A P \ (P x \ Q) \ (x |\| A \ Q) \ Q" by (rule ballE[Transfer.transferred]) -lemma fBexI[intro]: "P x \ x |\| A \ fBex A P" +lemma fBexI[no_atp]: "P x \ x |\| A \ fBex A P" by (rule bexI[Transfer.transferred]) -lemma rev_fBexI[intro?]: "x |\| A \ P x \ fBex A P" +lemma rev_fBexI[no_atp]: "x |\| A \ P x \ fBex A P" by (rule rev_bexI[Transfer.transferred]) -lemma fBexCI: "(fBall A (\x. \ P x) \ P a) \ a |\| A \ fBex A P" +lemma fBexCI[no_atp]: "(fBall A (\x. \ P x) \ P a) \ a |\| A \ fBex A P" by (rule bexCI[Transfer.transferred]) -lemma fBexE[elim!]: "fBex A P \ (\x. x |\| A \ P x \ Q) \ Q" +lemma fBexE[no_atp]: "fBex A P \ (\x. x |\| A \ P x \ Q) \ Q" by (rule bexE[Transfer.transferred]) -lemma fBall_triv[simp]: "fBall A (\x. P) = ((\x. x |\| A) \ P)" +lemma fBall_triv[no_atp]: "fBall A (\x. P) = ((\x. x |\| A) \ P)" by (rule ball_triv[Transfer.transferred]) -lemma fBex_triv[simp]: "fBex A (\x. P) = ((\x. x |\| A) \ P)" +lemma fBex_triv[no_atp]: "fBex A (\x. P) = ((\x. x |\| A) \ P)" by (rule bex_triv[Transfer.transferred]) -lemma fBex_triv_one_point1[simp]: "fBex A (\x. x = a) = (a |\| A)" +lemma fBex_triv_one_point1[no_atp]: "fBex A (\x. x = a) = (a |\| A)" by (rule bex_triv_one_point1[Transfer.transferred]) -lemma fBex_triv_one_point2[simp]: "fBex A ((=) a) = (a |\| A)" +lemma fBex_triv_one_point2[no_atp]: "fBex A ((=) a) = (a |\| A)" by (rule bex_triv_one_point2[Transfer.transferred]) -lemma fBex_one_point1[simp]: "fBex A (\x. x = a \ P x) = (a |\| A \ P a)" +lemma fBex_one_point1[no_atp]: "fBex A (\x. x = a \ P x) = (a |\| A \ P a)" by (rule bex_one_point1[Transfer.transferred]) -lemma fBex_one_point2[simp]: "fBex A (\x. a = x \ P x) = (a |\| A \ P a)" +lemma fBex_one_point2[no_atp]: "fBex A (\x. a = x \ P x) = (a |\| A \ P a)" by (rule bex_one_point2[Transfer.transferred]) -lemma fBall_one_point1[simp]: "fBall A (\x. x = a \ P x) = (a |\| A \ P a)" +lemma fBall_one_point1[no_atp]: "fBall A (\x. x = a \ P x) = (a |\| A \ P a)" by (rule ball_one_point1[Transfer.transferred]) -lemma fBall_one_point2[simp]: "fBall A (\x. a = x \ P x) = (a |\| A \ P a)" +lemma fBall_one_point2[no_atp]: "fBall A (\x. a = x \ P x) = (a |\| A \ P a)" by (rule ball_one_point2[Transfer.transferred]) lemma fBall_conj_distrib: "fBall A (\x. P x \ Q x) = (fBall A P \ fBall A Q)"