diff -r fba16c509af0 -r e8c96013ea8a src/HOL/Relation.thy --- a/src/HOL/Relation.thy Wed Mar 05 18:28:57 2025 +0100 +++ b/src/HOL/Relation.thy Tue Mar 11 10:20:44 2025 +0100 @@ -151,7 +151,7 @@ subsubsection \Reflexivity\ definition refl_on :: "'a set \ 'a rel \ bool" - where "refl_on A r \ r \ A \ A \ (\x\A. (x, x) \ r)" + where "refl_on A r \ (\x\A. (x, x) \ r)" abbreviation refl :: "'a rel \ bool" \ \reflexivity over a type\ where "refl \ refl_on UNIV" @@ -170,7 +170,7 @@ lemma reflp_refl_eq [pred_set_conv]: "reflp (\x y. (x, y) \ r) \ refl r" by (simp add: refl_on_def reflp_def) -lemma refl_onI [intro?]: "r \ A \ A \ (\x. x \ A \ (x, x) \ r) \ refl_on A r" +lemma refl_onI [intro?]: "(\x. x \ A \ (x, x) \ r) \ refl_on A r" unfolding refl_on_def by (iprover intro!: ballI) lemma reflI: "(\x. (x, x) \ r) \ refl r" @@ -186,12 +186,6 @@ lemma refl_onD: "refl_on A r \ a \ A \ (a, a) \ r" unfolding refl_on_def by blast -lemma refl_onD1: "refl_on A r \ (x, y) \ r \ x \ A" - unfolding refl_on_def by blast - -lemma refl_onD2: "refl_on A r \ (x, y) \ r \ y \ A" - unfolding refl_on_def by blast - lemma reflD: "refl r \ (a, a) \ r" unfolding refl_on_def by blast @@ -252,10 +246,6 @@ lemma refl_on_singleton [simp]: "refl_on {x} {(x, x)}" by (blast intro: refl_onI) -lemma refl_on_def' [nitpick_unfold, code]: - "refl_on A r \ (\(x, y) \ r. x \ A \ y \ A) \ (\x \ A. (x, x) \ r)" - by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2) - lemma reflp_on_equality [simp]: "reflp_on A (=)" by (simp add: reflp_on_def) @@ -952,7 +942,7 @@ by blast lemma refl_on_Id_on: "refl_on A (Id_on A)" - by (rule refl_onI [OF Id_on_subset_Times Id_onI]) + by (rule refl_onI[OF Id_onI]) lemma antisym_Id_on [simp]: "antisym (Id_on A)" unfolding antisym_def by blast