diff -r ad1ffcc90162 -r e96d5c42c4b0 src/HOL/Complex/ComplexArith0.ML --- a/src/HOL/Complex/ComplexArith0.ML Sat Feb 14 02:06:12 2004 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,187 +0,0 @@ -(* Title: ComplexArith0.ML - Author: Jacques D. Fleuriot - Copyright: 2001 University of Edinburgh - Description: Assorted facts that need binary literals - Also, common factor cancellation (see e.g. HyperArith0) -*) - -local - open Complex_Numeral_Simprocs -in - -val rel_complex_number_of = [eq_complex_number_of]; - - -structure CancelNumeralFactorCommon = - struct - val mk_coeff = mk_coeff - val dest_coeff = dest_coeff 1 - val trans_tac = Real_Numeral_Simprocs.trans_tac - val norm_tac = ALLGOALS (simp_tac (HOL_ss addsimps complex_minus_from_mult_simps @ mult_1s)) - THEN ALLGOALS (simp_tac (HOL_ss addsimps bin_simps@complex_mult_minus_simps)) - THEN ALLGOALS (simp_tac (HOL_ss addsimps mult_ac)) - val numeral_simp_tac = ALLGOALS (simp_tac (HOL_ss addsimps rel_complex_number_of@bin_simps)) - val simplify_meta_eq = simplify_meta_eq - end - - -structure DivCancelNumeralFactor = CancelNumeralFactorFun - (open CancelNumeralFactorCommon - val prove_conv = Bin_Simprocs.prove_conv - val mk_bal = HOLogic.mk_binop "HOL.divide" - val dest_bal = HOLogic.dest_bin "HOL.divide" complexT - val cancel = mult_divide_cancel_left RS trans - val neg_exchanges = false -) - - -structure EqCancelNumeralFactor = CancelNumeralFactorFun - (open CancelNumeralFactorCommon - val prove_conv = Bin_Simprocs.prove_conv - val mk_bal = HOLogic.mk_eq - val dest_bal = HOLogic.dest_bin "op =" complexT - val cancel = field_mult_cancel_left RS trans - val neg_exchanges = false -) - -val complex_cancel_numeral_factors_relations = - map prep_simproc - [("complexeq_cancel_numeral_factor", - ["(l::complex) * m = n", "(l::complex) = m * n"], - EqCancelNumeralFactor.proc)]; - -val complex_cancel_numeral_factors_divide = prep_simproc - ("complexdiv_cancel_numeral_factor", - ["((l::complex) * m) / n", "(l::complex) / (m * n)", - "((number_of v)::complex) / (number_of w)"], - DivCancelNumeralFactor.proc); - -val complex_cancel_numeral_factors = - complex_cancel_numeral_factors_relations @ - [complex_cancel_numeral_factors_divide]; - -end; - - -Addsimprocs complex_cancel_numeral_factors; - - -(*examples: -print_depth 22; -set timing; -set trace_simp; -fun test s = (Goal s; by (Simp_tac 1)); - - -test "9*x = 12 * (y::complex)"; -test "(9*x) / (12 * (y::complex)) = z"; - -test "-99*x = 132 * (y::complex)"; - -test "999*x = -396 * (y::complex)"; -test "(999*x) / (-396 * (y::complex)) = z"; - -test "-99*x = -81 * (y::complex)"; -test "(-99*x) / (-81 * (y::complex)) = z"; - -test "-2 * x = -1 * (y::complex)"; -test "-2 * x = -(y::complex)"; -test "(-2 * x) / (-1 * (y::complex)) = z"; - -*) - - -(** Declarations for ExtractCommonTerm **) - -local - open Complex_Numeral_Simprocs -in - -structure CancelFactorCommon = - struct - val mk_sum = long_mk_prod - val dest_sum = dest_prod - val mk_coeff = mk_coeff - val dest_coeff = dest_coeff - val find_first = find_first [] - val trans_tac = Real_Numeral_Simprocs.trans_tac - val norm_tac = ALLGOALS (simp_tac (HOL_ss addsimps mult_1s@mult_ac)) - end; - - -structure EqCancelFactor = ExtractCommonTermFun - (open CancelFactorCommon - val prove_conv = Bin_Simprocs.prove_conv - val mk_bal = HOLogic.mk_eq - val dest_bal = HOLogic.dest_bin "op =" complexT - val simplify_meta_eq = cancel_simplify_meta_eq field_mult_cancel_left -); - - -structure DivideCancelFactor = ExtractCommonTermFun - (open CancelFactorCommon - val prove_conv = Bin_Simprocs.prove_conv - val mk_bal = HOLogic.mk_binop "HOL.divide" - val dest_bal = HOLogic.dest_bin "HOL.divide" complexT - val simplify_meta_eq = cancel_simplify_meta_eq mult_divide_cancel_eq_if -); - -val complex_cancel_factor = - map prep_simproc - [("complex_eq_cancel_factor", ["(l::complex) * m = n", "(l::complex) = m * n"], - EqCancelFactor.proc), - ("complex_divide_cancel_factor", ["((l::complex) * m) / n", "(l::complex) / (m * n)"], - DivideCancelFactor.proc)]; - -end; - -Addsimprocs complex_cancel_factor; - - -(*examples: -print_depth 22; -set timing; -set trace_simp; -fun test s = (Goal s; by (Asm_simp_tac 1)); - -test "x*k = k*(y::complex)"; -test "k = k*(y::complex)"; -test "a*(b*c) = (b::complex)"; -test "a*(b*c) = d*(b::complex)*(x*a)"; - - -test "(x*k) / (k*(y::complex)) = (uu::complex)"; -test "(k) / (k*(y::complex)) = (uu::complex)"; -test "(a*(b*c)) / ((b::complex)) = (uu::complex)"; -test "(a*(b*c)) / (d*(b::complex)*(x*a)) = (uu::complex)"; - -(*FIXME: what do we do about this?*) -test "a*(b*c)/(y*z) = d*(b::complex)*(x*a)/z"; -*) - - -(** Division by 1, -1 **) - -Goal "x/-1 = -(x::complex)"; -by (Simp_tac 1); -qed "complex_divide_minus1"; -Addsimps [complex_divide_minus1]; - -Goal "-1/(x::complex) = - (1/x)"; -by (simp_tac (simpset() addsimps [complex_divide_def, inverse_minus_eq]) 1); -qed "complex_minus1_divide"; -Addsimps [complex_minus1_divide]; - -Goal "(x + - a = (0::complex)) = (x=a)"; -by (simp_tac (simpset() addsimps [diff_eq_eq,symmetric complex_diff_def]) 1); -qed "complex_add_minus_iff"; -Addsimps [complex_add_minus_iff]; - -Goal "(x+y = (0::complex)) = (y = -x)"; -by Auto_tac; -by (dtac (sym RS (diff_eq_eq RS iffD2)) 1); -by Auto_tac; -qed "complex_add_eq_0_iff"; -AddIffs [complex_add_eq_0_iff]; - -