diff -r ad1ffcc90162 -r e96d5c42c4b0 src/HOL/Hyperreal/Integration.ML --- a/src/HOL/Hyperreal/Integration.ML Sat Feb 14 02:06:12 2004 +0100 +++ b/src/HOL/Hyperreal/Integration.ML Sun Feb 15 10:46:37 2004 +0100 @@ -4,6 +4,9 @@ Description : Theory of integration (c.f. Harison's HOL development) *) +val mult_2 = thm"mult_2"; +val mult_2_right = thm"mult_2_right"; + Goalw [psize_def] "a = b ==> psize (%n. if n = 0 then a else b) = 0"; by Auto_tac; qed "partition_zero"; @@ -358,7 +361,7 @@ by (dtac add_strict_mono 1 THEN assume_tac 1); by (auto_tac (claset(), HOL_ss addsimps [left_distrib RS sym, - real_mult_2_right RS sym, mult_less_cancel_right])); + mult_2_right RS sym, mult_less_cancel_right])); by (ALLGOALS(arith_tac)); qed "Integral_unique"; @@ -956,7 +959,7 @@ ("c","abs (rsum (D, p) g - k2) * 2")] add_strict_mono 1 THEN assume_tac 1); by (auto_tac (claset(),HOL_ss addsimps [rsum_add,left_distrib RS sym, - real_mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"])); + mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"])); by (arith_tac 1); qed "Integral_add_fun"; @@ -1015,7 +1018,7 @@ by (arith_tac 1); by (dtac add_strict_mono 1 THEN assume_tac 1); by (auto_tac (claset(),HOL_ss addsimps [left_distrib RS sym, - real_mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"])); + mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"])); by (arith_tac 1); qed "Integral_le"; @@ -1037,7 +1040,7 @@ by (thin_tac "0 < e" 1); by (dtac add_strict_mono 1 THEN assume_tac 1); by (auto_tac (claset(),HOL_ss addsimps [left_distrib RS sym, - real_mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"])); + mult_2_right RS sym,real_mult_less_iff1,CLAIM "(0::real) < 2"])); by (arith_tac 1); qed "Integral_imp_Cauchy";