diff -r 40abbc7c86df -r e98f59806244 src/HOL/Matrix/Matrix.thy --- a/src/HOL/Matrix/Matrix.thy Tue Sep 19 23:18:41 2006 +0200 +++ b/src/HOL/Matrix/Matrix.thy Wed Sep 20 00:24:24 2006 +0200 @@ -132,14 +132,14 @@ apply (rule exI[of _ n], simp add: split_if)+ by (simp add: split_if) -lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _") +lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") proof - have "?r <= n" by (simp add: nrows_le) moreover have "n <= ?r" by (simp add:le_nrows, arith) ultimately show "?r = n" by simp qed -lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _") +lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") proof - have "?r <= n" by (simp add: ncols_le) moreover have "n <= ?r" by (simp add: le_ncols, arith)