diff -r 81a0fc28b0de -r e9a65675e5e8 src/HOL/Library/Executable_Set.thy --- a/src/HOL/Library/Executable_Set.thy Mon Mar 17 22:34:25 2008 +0100 +++ b/src/HOL/Library/Executable_Set.thy Mon Mar 17 22:34:26 2008 +0100 @@ -99,7 +99,7 @@ by pat_completeness auto termination by lexicographic_order -lemmas unionl_def = unionl.simps(2) +lemmas unionl_eq = unionl.simps(2) function intersect :: "'a list \ 'a list \ 'a list" where @@ -109,7 +109,7 @@ by pat_completeness auto termination by lexicographic_order -lemmas intersect_def = intersect.simps(3) +lemmas intersect_eq = intersect.simps(3) function subtract :: "'a list \ 'a list \ 'a list" where @@ -119,7 +119,7 @@ by pat_completeness auto termination by lexicographic_order -lemmas subtract_def = subtract.simps(3) +lemmas subtract_eq = subtract.simps(3) function map_distinct :: "('a \ 'b) \ 'a list \ 'b list" where @@ -128,7 +128,7 @@ by pat_completeness auto termination by lexicographic_order -lemmas map_distinct_def = map_distinct.simps(2) +lemmas map_distinct_eq = map_distinct.simps(2) function unions :: "'a list list \ 'a list" where @@ -137,7 +137,7 @@ by pat_completeness auto termination by lexicographic_order -lemmas unions_def = unions.simps(2) +lemmas unions_eq = unions.simps(2) consts intersects :: "'a list list \ 'a list" primrec @@ -169,12 +169,12 @@ lemma iso_union: "set (unionl xs ys) = set xs \ set ys" - unfolding unionl_def + unfolding unionl_eq by (induct xs arbitrary: ys) (simp_all add: iso_insert) lemma iso_intersect: "set (intersect xs ys) = set xs \ set ys" - unfolding intersect_def Int_def by (simp add: Int_def iso_member) auto + unfolding intersect_eq Int_def by (simp add: Int_def iso_member) auto definition subtract' :: "'a list \ 'a list \ 'a list" where @@ -185,16 +185,16 @@ assumes distnct: "distinct ys" shows "set (subtract' ys xs) = set ys - set xs" and "distinct (subtract' ys xs)" - unfolding subtract'_def flip_def subtract_def + unfolding subtract'_def flip_def subtract_eq using distnct by (induct xs arbitrary: ys) auto lemma iso_map_distinct: "set (map_distinct f xs) = image f (set xs)" - unfolding map_distinct_def by (induct xs) (simp_all add: iso_insert) + unfolding map_distinct_eq by (induct xs) (simp_all add: iso_insert) lemma iso_unions: "set (unions xss) = \ set (map set xss)" - unfolding unions_def + unfolding unions_eq proof (induct xss) case Nil show ?case by simp next