diff -r 8aaa21db41f3 -r e9b4835a54ee src/HOL/Old_Number_Theory/Gauss.thy --- a/src/HOL/Old_Number_Theory/Gauss.thy Thu Aug 05 23:43:43 2010 +0200 +++ b/src/HOL/Old_Number_Theory/Gauss.thy Fri Aug 06 12:37:00 2010 +0200 @@ -1,6 +1,5 @@ -(* Title: HOL/Quadratic_Reciprocity/Gauss.thy - ID: $Id$ - Authors: Jeremy Avigad, David Gray, and Adam Kramer) +(* Title: HOL/Old_Number_Theory/Gauss.thy + Authors: Jeremy Avigad, David Gray, and Adam Kramer *) header {* Gauss' Lemma *} @@ -19,29 +18,12 @@ assumes a_nonzero: "0 < a" begin -definition - A :: "int set" where - "A = {(x::int). 0 < x & x \ ((p - 1) div 2)}" - -definition - B :: "int set" where - "B = (%x. x * a) ` A" - -definition - C :: "int set" where - "C = StandardRes p ` B" - -definition - D :: "int set" where - "D = C \ {x. x \ ((p - 1) div 2)}" - -definition - E :: "int set" where - "E = C \ {x. ((p - 1) div 2) < x}" - -definition - F :: "int set" where - "F = (%x. (p - x)) ` E" +definition "A = {(x::int). 0 < x & x \ ((p - 1) div 2)}" +definition "B = (%x. x * a) ` A" +definition "C = StandardRes p ` B" +definition "D = C \ {x. x \ ((p - 1) div 2)}" +definition "E = C \ {x. ((p - 1) div 2) < x}" +definition "F = (%x. (p - x)) ` E" subsection {* Basic properties of p *}