diff -r bd951e02d6b9 -r e9f3b94eb6a0 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Sat May 24 09:06:26 2025 +0200 +++ b/src/HOL/Finite_Set.thy Wed May 28 17:49:22 2025 +0200 @@ -556,7 +556,7 @@ using assms by (simp add: bind_UNION) lemma finite_filter [simp]: "finite S \ finite (Set.filter P S)" -unfolding Set.filter_def by simp + by (simp add:) lemma finite_set_of_finite_funs: assumes "finite A" "finite B" @@ -1341,14 +1341,13 @@ interpret commute_insert: comp_fun_commute "(\x A'. if P x then Set.insert x A' else A')" by (fact comp_fun_commute_filter_fold) from \finite A\ show ?thesis - by induct (auto simp add: Set.filter_def) + by induct (auto simp add: set_eq_iff) qed lemma inter_Set_filter: assumes "finite B" shows "A \ B = Set.filter (\x. x \ A) B" - using assms - by induct (auto simp: Set.filter_def) + using assms by (simp add: set_eq_iff ac_simps) lemma image_fold_insert: assumes "finite A"