diff -r bd951e02d6b9 -r e9f3b94eb6a0 src/HOL/Library/Discrete_Functions.thy --- a/src/HOL/Library/Discrete_Functions.thy Sat May 24 09:06:26 2025 +0200 +++ b/src/HOL/Library/Discrete_Functions.thy Wed May 28 17:49:22 2025 +0200 @@ -200,8 +200,10 @@ lemma floor_sqrt_code[code]: "floor_sqrt n = Max (Set.filter (\m. m\<^sup>2 \ n) {0..n})" proof - - from power2_nat_le_imp_le [of _ n] have "{m. m \ n \ m\<^sup>2 \ n} = {m. m\<^sup>2 \ n}" by auto - then show ?thesis by (simp add: floor_sqrt_def Set.filter_def) + from power2_nat_le_imp_le [of _ n] + have "{m. m \ n \ m\<^sup>2 \ n} = {m. m\<^sup>2 \ n}" by auto + then show ?thesis + by (simp add: floor_sqrt_def) qed lemma floor_sqrt_inverse_power2 [simp]: "floor_sqrt (n\<^sup>2) = n"