diff -r f42353afd6d3 -r ea48dd8b0232 doc-src/TutorialI/Misc/simp.thy --- a/doc-src/TutorialI/Misc/simp.thy Fri Jan 05 10:19:32 2001 +0100 +++ b/doc-src/TutorialI/Misc/simp.thy Fri Jan 05 13:10:37 2001 +0100 @@ -136,28 +136,28 @@ original definition. For example, given *} -constdefs exor :: "bool \ bool \ bool" - "exor A B \ (A \ \B) \ (\A \ B)"; +constdefs xor :: "bool \ bool \ bool" + "xor A B \ (A \ \B) \ (\A \ B)"; text{*\noindent we may want to prove *} -lemma "exor A (\A)"; +lemma "xor A (\A)"; txt{*\noindent Typically, the opening move consists in \emph{unfolding} the definition(s), which we need to get started, but nothing else:\indexbold{*unfold}\indexbold{definition!unfolding} *} -apply(simp only:exor_def); +apply(simp only:xor_def); txt{*\noindent In this particular case, the resulting goal @{subgoals[display,indent=0]} can be proved by simplification. Thus we could have proved the lemma outright by -*}(*<*)oops;lemma "exor A (\A)";(*>*) -apply(simp add: exor_def) +*}(*<*)oops;lemma "xor A (\A)";(*>*) +apply(simp add: xor_def) (*<*)done(*>*) text{*\noindent Of course we can also unfold definitions in the middle of a proof.