diff -r 5eb932e604a2 -r eab6ce8368fa src/HOL/Analysis/Conformal_Mappings.thy --- a/src/HOL/Analysis/Conformal_Mappings.thy Wed Jan 10 15:21:49 2018 +0100 +++ b/src/HOL/Analysis/Conformal_Mappings.thy Wed Jan 10 15:25:09 2018 +0100 @@ -1141,10 +1141,10 @@ done with \e>0\ show ?thesis by force qed - have "inj (op * (deriv f \))" + have "inj (( * ) (deriv f \))" using dnz by simp - then obtain g' where g': "linear g'" "g' \ op * (deriv f \) = id" - using linear_injective_left_inverse [of "op * (deriv f \)"] + then obtain g' where g': "linear g'" "g' \ ( * ) (deriv f \) = id" + using linear_injective_left_inverse [of "( * ) (deriv f \)"] by (auto simp: linear_times) show ?thesis apply (rule has_derivative_locally_injective [OF S, where f=f and f' = "\z h. deriv f z * h" and g' = g']) @@ -2093,10 +2093,10 @@ apply (simp add: C_def False fo) apply (simp add: derivative_intros dfa complex_derivative_chain) done - have sb1: "op * (C * r) ` (\z. f (a + of_real r * z) / (C * r)) ` ball 0 1 + have sb1: "( * ) (C * r) ` (\z. f (a + of_real r * z) / (C * r)) ` ball 0 1 \ f ` ball a r" using \0 < r\ by (auto simp: dist_norm norm_mult C_def False) - have sb2: "ball (C * r * b) r' \ op * (C * r) ` ball b t" + have sb2: "ball (C * r * b) r' \ ( * ) (C * r) ` ball b t" if "1 / 12 < t" for b t proof - have *: "r * cmod (deriv f a) / 12 \ r * (t * cmod (deriv f a))" @@ -2602,7 +2602,7 @@ by (metis DiffD2 Ints_cases insertI1 subset_eq valid_path_imp_path) define p_circ where "p_circ \ circlepath p (h p)" define p_circ_pt where "p_circ_pt \ linepath (p+h p) (p+h p)" - define n_circ where "n_circ \ \n. (op +++ p_circ ^^ n) p_circ_pt" + define n_circ where "n_circ \ \n. ((+++) p_circ ^^ n) p_circ_pt" define cp where "cp \ if n\0 then reversepath (n_circ (nat n)) else n_circ (nat (- n))" have n_circ:"valid_path (n_circ k)" "winding_number (n_circ k) p = k" @@ -3861,7 +3861,7 @@ then show "h field_differentiable at (\ x)" unfolding t_def field_differentiable_def by blast qed - then have " (op / 1 has_contour_integral 0) (h \ \) + then have " ((/) 1 has_contour_integral 0) (h \ \) = ((\x. deriv h x / h x) has_contour_integral 0) \" unfolding has_contour_integral apply (intro has_integral_spike_eq[OF negligible_finite, OF \finite spikes\])