diff -r 5eb932e604a2 -r eab6ce8368fa src/HOL/Lifting.thy --- a/src/HOL/Lifting.thy Wed Jan 10 15:21:49 2018 +0100 +++ b/src/HOL/Lifting.thy Wed Jan 10 15:25:09 2018 +0100 @@ -78,7 +78,7 @@ using a unfolding Quotient_def by blast -lemma Quotient_rep_abs_eq: "R t t \ R \ op= \ Rep (Abs t) = t" +lemma Quotient_rep_abs_eq: "R t t \ R \ (=) \ Rep (Abs t) = t" using a unfolding Quotient_def by blast @@ -118,7 +118,7 @@ end -lemma identity_quotient: "Quotient (op =) id id (op =)" +lemma identity_quotient: "Quotient (=) id id (=)" unfolding Quotient_def by simp text \TODO: Use one of these alternatives as the real definition.\ @@ -217,7 +217,7 @@ lemma UNIV_typedef_to_Quotient: assumes "type_definition Rep Abs UNIV" and T_def: "T \ (\x y. x = Rep y)" - shows "Quotient (op =) Abs Rep T" + shows "Quotient (=) Abs Rep T" proof - interpret type_definition Rep Abs UNIV by fact from Abs_inject Rep_inverse Abs_inverse T_def show ?thesis @@ -228,7 +228,7 @@ fixes Abs :: "'a \ 'b" and Rep :: "'b \ 'a" assumes "type_definition Rep Abs (UNIV::'a set)" - shows "equivp (op= ::'a\'a\bool)" + shows "equivp ((=) ::'a\'a\bool)" by (rule identity_equivp) lemma typedef_to_Quotient: @@ -284,7 +284,7 @@ lemma Quotient_right_total: "right_total T" using 1 unfolding Quotient_alt_def right_total_def by metis -lemma Quotient_rel_eq_transfer: "(T ===> T ===> op =) R (op =)" +lemma Quotient_rel_eq_transfer: "(T ===> T ===> (=)) R (=)" using 1 unfolding Quotient_alt_def rel_fun_def by simp lemma Quotient_abs_induct: @@ -306,7 +306,7 @@ lemma Quotient_bi_total: "bi_total T" using 1 2 unfolding Quotient_alt_def bi_total_def reflp_def by auto -lemma Quotient_id_abs_transfer: "(op = ===> T) (\x. x) Abs" +lemma Quotient_id_abs_transfer: "((=) ===> T) (\x. x) Abs" using 1 2 unfolding Quotient_alt_def reflp_def rel_fun_def by simp lemma Quotient_total_abs_induct: "(\y. P (Abs y)) \ P x" @@ -343,7 +343,7 @@ using T_def type Quotient_right_total typedef_to_Quotient by blast -lemma typedef_rep_transfer: "(T ===> op =) (\x. x) Rep" +lemma typedef_rep_transfer: "(T ===> (=)) (\x. x) Rep" unfolding rel_fun_def T_def by simp end @@ -366,21 +366,21 @@ lemma Quotient_composition_ge_eq: assumes "left_total T" - assumes "R \ op=" - shows "(T OO R OO T\\) \ op=" + assumes "R \ (=)" + shows "(T OO R OO T\\) \ (=)" using assms unfolding left_total_def by fast lemma Quotient_composition_le_eq: assumes "left_unique T" - assumes "R \ op=" - shows "(T OO R OO T\\) \ op=" + assumes "R \ (=)" + shows "(T OO R OO T\\) \ (=)" using assms unfolding left_unique_def by blast lemma eq_onp_le_eq: - "eq_onp P \ op=" unfolding eq_onp_def by blast + "eq_onp P \ (=)" unfolding eq_onp_def by blast lemma reflp_ge_eq: - "reflp R \ R \ op=" unfolding reflp_def by blast + "reflp R \ R \ (=)" unfolding reflp_def by blast text \Proving a parametrized correspondence relation\ @@ -391,19 +391,19 @@ "NEG A B \ B \ A" lemma pos_OO_eq: - shows "POS (A OO op=) A" + shows "POS (A OO (=)) A" unfolding POS_def OO_def by blast lemma pos_eq_OO: - shows "POS (op= OO A) A" + shows "POS ((=) OO A) A" unfolding POS_def OO_def by blast lemma neg_OO_eq: - shows "NEG (A OO op=) A" + shows "NEG (A OO (=)) A" unfolding NEG_def OO_def by auto lemma neg_eq_OO: - shows "NEG (op= OO A) A" + shows "NEG ((=) OO A) A" unfolding NEG_def OO_def by blast lemma POS_trans: @@ -487,7 +487,7 @@ lemma composed_equiv_rel_eq_onp: assumes "left_unique R" - assumes "(R ===> op=) P P'" + assumes "(R ===> (=)) P P'" assumes "Domainp R = P''" shows "(R OO eq_onp P' OO R\\) = eq_onp (inf P'' P)" using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def rel_fun_def eq_onp_def @@ -496,14 +496,14 @@ lemma composed_equiv_rel_eq_eq_onp: assumes "left_unique R" assumes "Domainp R = P" - shows "(R OO op= OO R\\) = eq_onp P" + shows "(R OO (=) OO R\\) = eq_onp P" using assms unfolding OO_def conversep_iff Domainp_iff[abs_def] left_unique_def eq_onp_def fun_eq_iff is_equality_def by metis lemma pcr_Domainp_par_left_total: assumes "Domainp B = P" assumes "left_total A" - assumes "(A ===> op=) P' P" + assumes "(A ===> (=)) P' P" shows "Domainp (A OO B) = P'" using assms unfolding Domainp_iff[abs_def] OO_def bi_unique_def left_total_def rel_fun_def @@ -512,7 +512,7 @@ lemma pcr_Domainp_par: assumes "Domainp B = P2" assumes "Domainp A = P1" -assumes "(A ===> op=) P2' P2" +assumes "(A ===> (=)) P2' P2" shows "Domainp (A OO B) = (inf P1 P2')" using assms unfolding rel_fun_def Domainp_iff[abs_def] OO_def by (fast intro: fun_eq_iff)