diff -r 5eb932e604a2 -r eab6ce8368fa src/HOL/Quotient_Examples/Quotient_Int.thy --- a/src/HOL/Quotient_Examples/Quotient_Int.thy Wed Jan 10 15:21:49 2018 +0100 +++ b/src/HOL/Quotient_Examples/Quotient_Int.thy Wed Jan 10 15:25:09 2018 +0100 @@ -33,7 +33,7 @@ "plus_int_raw (x, y) (u, v) = (x + u, y + v)" quotient_definition - "(op +) :: (int \ int \ int)" is "plus_int_raw" by auto + "(+) :: (int \ int \ int)" is "plus_int_raw" by auto fun uminus_int_raw :: "(nat \ nat) \ (nat \ nat)" @@ -78,7 +78,7 @@ done quotient_definition - "(op *) :: (int \ int \ int)" is "times_int_raw" + "(( * )) :: (int \ int \ int)" is "times_int_raw" apply(rule equivp_transp[OF int_equivp]) apply(rule times_int_raw_fst) apply(assumption) @@ -92,7 +92,7 @@ "le_int_raw (x, y) (u, v) = (x+v \ u+y)" quotient_definition - le_int_def: "(op \) :: int \ int \ bool" is "le_int_raw" by auto + le_int_def: "(\) :: int \ int \ bool" is "le_int_raw" by auto definition less_int_def: "(z::int) < w = (z \ w \ z \ w)"