diff -r 0035be079bee -r ead82c82da9e src/HOL/Isar_examples/Peirce.thy --- a/src/HOL/Isar_examples/Peirce.thy Wed Jun 13 16:43:02 2007 +0200 +++ b/src/HOL/Isar_examples/Peirce.thy Wed Jun 13 18:30:11 2007 +0200 @@ -21,16 +21,16 @@ theorem "((A --> B) --> A) --> A" proof - assume aba: "(A --> B) --> A" + assume "(A --> B) --> A" show A proof (rule classical) assume "~ A" have "A --> B" proof assume A - thus B by contradiction + with `~ A` show B by contradiction qed - with aba show A .. + with `(A --> B) --> A` show A .. qed qed @@ -52,17 +52,17 @@ theorem "((A --> B) --> A) --> A" proof - assume aba: "(A --> B) --> A" + assume "(A --> B) --> A" show A proof (rule classical) presume "A --> B" - with aba show A .. + with `(A --> B) --> A` show A .. next assume "~ A" show "A --> B" proof assume A - thus B by contradiction + with `~ A` show B by contradiction qed qed qed