diff -r d36c7dc40000 -r eae6549dbea2 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Fri May 27 20:13:06 2016 +0200 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Fri May 27 20:23:55 2016 +0200 @@ -2559,8 +2559,7 @@ "(f has_integral k) s \ (g has_integral l) s \ ((\x. f x - g x) has_integral (k - l)) s" using has_integral_add[OF _ has_integral_neg, of f k s g l] - unfolding algebra_simps - by auto + by (auto simp: algebra_simps) lemma integral_0 [simp]: "integral s (\x::'n::euclidean_space. 0::'m::real_normed_vector) = 0" @@ -6703,9 +6702,10 @@ using inj(1) unfolding inj_on_def by fastforce have "(\(x, k)\(\(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\(x, k)\p. content k *\<^sub>R f (g x)) - i" (is "?l = _") using assms(7) - unfolding algebra_simps add_left_cancel scaleR_right.setsum - by (subst setsum.reindex_bij_betw[symmetric, where h="\(x, k). (g x, g ` k)" and S=p]) - (auto intro!: * setsum.cong simp: bij_betw_def dest!: p(4)) + apply (simp only: algebra_simps add_left_cancel scaleR_right.setsum) + apply (subst setsum.reindex_bij_betw[symmetric, where h="\(x, k). (g x, g ` k)" and S=p]) + apply (auto intro!: * setsum.cong simp: bij_betw_def dest!: p(4)) + done also have "\ = r *\<^sub>R ((\(x, k)\p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") unfolding scaleR_diff_right scaleR_scaleR using assms(1) @@ -7759,7 +7759,7 @@ assume as: "c \ t" "t < c + ?d" have *: "integral {a .. c} f = integral {a .. b} f - integral {c .. b} f" "integral {a .. t} f = integral {a .. b} f - integral {t .. b} f" - unfolding algebra_simps + apply (simp_all only: algebra_simps) apply (rule_tac[!] integral_combine) using assms as apply auto