diff -r 1a20fd9cf281 -r eb4ddd18d635 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Sun Apr 24 21:31:14 2016 +0200 +++ b/src/HOL/Library/Float.thy Mon Apr 25 16:09:26 2016 +0200 @@ -953,7 +953,7 @@ then show ?thesis by simp next case False - def n \ "\log 2 (real_of_int x)\" + define n where "n = \log 2 (real_of_int x)\" then have "0 \ n" using \2 \ x\ by simp from \2 \ x\ False have "x mod 2 = 1" "\ 2 dvd x" @@ -1306,7 +1306,7 @@ show ?thesis proof (cases "0 \ l") case True - def x' \ "x * 2 ^ nat l" + define x' where "x' = x * 2 ^ nat l" have "int x * 2 ^ nat l = x'" by (simp add: x'_def of_nat_mult of_nat_power) moreover have "real x * 2 powr l = real x'" @@ -1319,7 +1319,7 @@ by (metis floor_divide_of_int_eq of_int_of_nat_eq) next case False - def y' \ "y * 2 ^ nat (- l)" + define y' where "y' = y * 2 ^ nat (- l)" from \y \ 0\ have "y' \ 0" by (simp add: y'_def) have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def of_nat_mult of_nat_power) moreover have "real x * real_of_int (2::int) powr real_of_int l / real y = x / real y'" @@ -1683,14 +1683,14 @@ then show ?thesis by simp next case False - def k \ "\log 2 \ai\\" + define k where "k = \log 2 \ai\\" then have "\log 2 \ai\\ = k" by simp then have k: "2 powr k \ \ai\" "\ai\ < 2 powr (k + 1)" by (simp_all add: floor_log_eq_powr_iff \ai \ 0\) have "k \ 0" using assms by (auto simp: k_def) - def r \ "\ai\ - 2 ^ nat k" + define r where "r = \ai\ - 2 ^ nat k" have r: "0 \ r" "r < 2 powr k" using \k \ 0\ k by (auto simp: r_def k_def algebra_simps powr_add abs_if powr_int)