diff -r 1a20fd9cf281 -r eb4ddd18d635 src/HOL/Library/While_Combinator.thy --- a/src/HOL/Library/While_Combinator.thy Sun Apr 24 21:31:14 2016 +0200 +++ b/src/HOL/Library/While_Combinator.thy Mon Apr 25 16:09:26 2016 +0200 @@ -60,12 +60,12 @@ by(metis while_option_stop2) theorem while_option_rule: -assumes step: "!!s. P s ==> b s ==> P (c s)" -and result: "while_option b c s = Some t" -and init: "P s" -shows "P t" + assumes step: "!!s. P s ==> b s ==> P (c s)" + and result: "while_option b c s = Some t" + and init: "P s" + shows "P t" proof - - def k == "LEAST k. ~ b ((c ^^ k) s)" + define k where "k = (LEAST k. ~ b ((c ^^ k) s))" from assms have t: "t = (c ^^ k) s" by (simp add: while_option_def k_def split: if_splits) have 1: "ALL i