diff -r 1a20fd9cf281 -r eb4ddd18d635 src/HOL/Number_Theory/Eratosthenes.thy --- a/src/HOL/Number_Theory/Eratosthenes.thy Sun Apr 24 21:31:14 2016 +0200 +++ b/src/HOL/Number_Theory/Eratosthenes.thy Mon Apr 25 16:09:26 2016 +0200 @@ -96,7 +96,7 @@ with A B C show ?thesis by simp next case False - def m \ "Suc n" + define m where "m = Suc n" then have "m > 0" by simp from False have "n > 0" by simp from A obtain q where q: "Suc (Suc a) = Suc n * q" by (rule dvdE) @@ -133,7 +133,8 @@ enumerate_Suc_eq in_set_enumerate_eq less_eq_dvd_minus) next case 3 - { def v \ "Suc m" and w \ "Suc n" + { define v where "v = Suc m" + define w where "w = Suc n" fix q assume "m + n \ q" then obtain r where q: "q = m + n + r" by (auto simp add: le_iff_add) @@ -359,7 +360,7 @@ have "List.find (\p. p \ m) (primes_upto n) = Some (smallest_prime_beyond m)" if assms: "m \ p" "prime p" "p \ n" for p proof - - def A \ "{p. p \ n \ prime p \ m \ p}" + define A where "A = {p. p \ n \ prime p \ m \ p}" from assms have "smallest_prime_beyond m \ p" by (auto intro: smallest_prime_beyond_smallest) from this \p \ n\ have *: "smallest_prime_beyond m \ n"