diff -r 1a20fd9cf281 -r eb4ddd18d635 src/HOL/Number_Theory/Euclidean_Algorithm.thy --- a/src/HOL/Number_Theory/Euclidean_Algorithm.thy Sun Apr 24 21:31:14 2016 +0200 +++ b/src/HOL/Number_Theory/Euclidean_Algorithm.thy Mon Apr 25 16:09:26 2016 +0200 @@ -159,8 +159,8 @@ next case True then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \ 0 \ (\a\A. a dvd l\<^sub>0)" by blast - def n \ "LEAST n. \l. l \ 0 \ (\a\A. a dvd l) \ euclidean_size l = n" - def l \ "SOME l. l \ 0 \ (\a\A. a dvd l) \ euclidean_size l = n" + define n where "n = (LEAST n. \l. l \ 0 \ (\a\A. a dvd l) \ euclidean_size l = n)" + define l where "l = (SOME l. l \ 0 \ (\a\A. a dvd l) \ euclidean_size l = n)" have "\l. l \ 0 \ (\a\A. a dvd l) \ euclidean_size l = n" apply (subst n_def) apply (rule LeastI[of _ "euclidean_size l\<^sub>0"])