diff -r dd58f13a8eb4 -r eb85850d3eb7 src/HOL/NumberTheory/Quadratic_Reciprocity.thy --- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy Fri Nov 17 02:19:55 2006 +0100 +++ b/src/HOL/NumberTheory/Quadratic_Reciprocity.thy Fri Nov 17 02:20:03 2006 +0100 @@ -168,25 +168,31 @@ begin definition - P_set :: "int set" + P_set :: "int set" where "P_set = {x. 0 < x & x \ ((p - 1) div 2) }" - Q_set :: "int set" +definition + Q_set :: "int set" where "Q_set = {x. 0 < x & x \ ((q - 1) div 2) }" - S :: "(int * int) set" +definition + S :: "(int * int) set" where "S = P_set <*> Q_set" - S1 :: "(int * int) set" +definition + S1 :: "(int * int) set" where "S1 = { (x, y). (x, y):S & ((p * y) < (q * x)) }" - S2 :: "(int * int) set" +definition + S2 :: "(int * int) set" where "S2 = { (x, y). (x, y):S & ((q * x) < (p * y)) }" - f1 :: "int => (int * int) set" +definition + f1 :: "int => (int * int) set" where "f1 j = { (j1, y). (j1, y):S & j1 = j & (y \ (q * j) div p) }" - f2 :: "int => (int * int) set" +definition + f2 :: "int => (int * int) set" where "f2 j = { (x, j1). (x, j1):S & j1 = j & (x \ (p * j) div q) }" lemma p_fact: "0 < (p - 1) div 2"