diff -r 9e0c035d026d -r eb9a9690b8f5 src/HOL/Analysis/Abstract_Limits.thy --- a/src/HOL/Analysis/Abstract_Limits.thy Mon Jul 10 18:48:22 2023 +0100 +++ b/src/HOL/Analysis/Abstract_Limits.thy Tue Jul 11 20:21:58 2023 +0100 @@ -178,7 +178,7 @@ shows "limitin Y (g \ f) (g l) F" proof - have "g l \ topspace Y" - by (meson assms continuous_map_def limitin_topspace) + by (meson assms continuous_map f image_eqI in_mono limitin_def) moreover have "\U. \\V. openin X V \ l \ V \ (\\<^sub>F x in F. f x \ V); openin Y U; g l \ U\ \ \\<^sub>F x in F. g (f x) \ U" @@ -194,14 +194,14 @@ definition topcontinuous_at where "topcontinuous_at X Y f x \ x \ topspace X \ - (\x \ topspace X. f x \ topspace Y) \ + f \ topspace X \ topspace Y \ (\V. openin Y V \ f x \ V \ (\U. openin X U \ x \ U \ (\y \ U. f y \ V)))" lemma topcontinuous_at_atin: "topcontinuous_at X Y f x \ x \ topspace X \ - (\x \ topspace X. f x \ topspace Y) \ + f \ topspace X \ topspace Y \ limitin Y f (f x) (atin X x)" unfolding topcontinuous_at_def by (fastforce simp add: limitin_atin)+