diff -r 6ce0c8d59f5a -r ec121999a9cb src/HOL/BNF_Cardinal_Order_Relation.thy --- a/src/HOL/BNF_Cardinal_Order_Relation.thy Sun Oct 06 22:56:07 2024 +0200 +++ b/src/HOL/BNF_Cardinal_Order_Relation.thy Tue Oct 08 12:10:35 2024 +0200 @@ -117,7 +117,7 @@ We shall prove that this notion is unique up to order isomorphism, meaning that order isomorphism shall be the true identity of cardinals.\ -definition card_of :: "'a set \ 'a rel" (\|_|\ ) +definition card_of :: "'a set \ 'a rel" (\(\open_block notation=\mixfix card_of\\|_|)\) where "card_of A = (SOME r. card_order_on A r)" lemma card_of_card_order_on: "card_order_on A |A|"