diff -r 038727567817 -r ec7cc76e88e5 src/HOL/Conditionally_Complete_Lattices.thy --- a/src/HOL/Conditionally_Complete_Lattices.thy Mon Nov 11 07:16:17 2019 +0000 +++ b/src/HOL/Conditionally_Complete_Lattices.thy Tue Nov 12 12:33:05 2019 +0000 @@ -337,7 +337,8 @@ lemma cINF_superset_mono: "A \ {} \ bdd_below (g ` B) \ A \ B \ (\x. x \ B \ g x \ f x) \ \(g ` B) \ \(f ` A)" by (rule cINF_mono) auto -lemma cSUP_subset_mono: "A \ {} \ bdd_above (g ` B) \ A \ B \ (\x. x \ B \ f x \ g x) \ \(f ` A) \ \(g ` B)" +lemma cSUP_subset_mono: + "\A \ {}; bdd_above (g ` B); A \ B; \x. x \ A \ f x \ g x\ \ \ (f ` A) \ \ (g ` B)" by (rule cSUP_mono) auto lemma less_eq_cInf_inter: "bdd_below A \ bdd_below B \ A \ B \ {} \ inf (Inf A) (Inf B) \ Inf (A \ B)"