diff -r fe5fd4fd4114 -r ed7bced29e1b src/HOL/Algebra/Module.thy --- a/src/HOL/Algebra/Module.thy Wed Jul 19 19:24:02 2006 +0200 +++ b/src/HOL/Algebra/Module.thy Wed Jul 19 19:25:58 2006 +0200 @@ -106,11 +106,11 @@ "x \ carrier M ==> \ \\<^bsub>M\<^esub> x = \\<^bsub>M\<^esub>" proof - assume M: "x \ carrier M" - note facts = M smult_closed + note facts = M smult_closed [OF R.zero_closed] from facts have "\ \\<^bsub>M\<^esub> x = (\ \\<^bsub>M\<^esub> x \\<^bsub>M\<^esub> \ \\<^bsub>M\<^esub> x) \\<^bsub>M\<^esub> \\<^bsub>M\<^esub> (\ \\<^bsub>M\<^esub> x)" by algebra also from M have "... = (\ \ \) \\<^bsub>M\<^esub> x \\<^bsub>M\<^esub> \\<^bsub>M\<^esub> (\ \\<^bsub>M\<^esub> x)" by (simp add: smult_l_distr del: R.l_zero R.r_zero) - also from facts have "... = \\<^bsub>M\<^esub>" by algebra + also from facts have "... = \\<^bsub>M\<^esub>" apply algebra apply algebra done finally show ?thesis . qed @@ -131,12 +131,15 @@ "[| a \ carrier R; x \ carrier M |] ==> (\a) \\<^bsub>M\<^esub> x = \\<^bsub>M\<^esub> (a \\<^bsub>M\<^esub> x)" proof - assume RM: "a \ carrier R" "x \ carrier M" - note facts = RM smult_closed + from RM have a_smult: "a \\<^bsub>M\<^esub> x \ carrier M" by simp + from RM have ma_smult: "\a \\<^bsub>M\<^esub> x \ carrier M" by simp + note facts = RM a_smult ma_smult from facts have "(\a) \\<^bsub>M\<^esub> x = (\a \\<^bsub>M\<^esub> x \\<^bsub>M\<^esub> a \\<^bsub>M\<^esub> x) \\<^bsub>M\<^esub> \\<^bsub>M\<^esub>(a \\<^bsub>M\<^esub> x)" by algebra also from RM have "... = (\a \ a) \\<^bsub>M\<^esub> x \\<^bsub>M\<^esub> \\<^bsub>M\<^esub>(a \\<^bsub>M\<^esub> x)" by (simp add: smult_l_distr) - also from facts smult_l_null have "... = \\<^bsub>M\<^esub>(a \\<^bsub>M\<^esub> x)" by algebra + also from facts smult_l_null have "... = \\<^bsub>M\<^esub>(a \\<^bsub>M\<^esub> x)" + apply algebra apply algebra done finally show ?thesis . qed