diff -r 3cf0edded065 -r ee48e0b4f669 src/HOL/Library/Countable_Set.thy --- a/src/HOL/Library/Countable_Set.thy Thu Mar 17 08:56:45 2016 +0100 +++ b/src/HOL/Library/Countable_Set.thy Thu Mar 17 14:48:14 2016 +0100 @@ -294,6 +294,14 @@ subsection \Misc lemmas\ +lemma infinite_countable_subset': + assumes X: "infinite X" shows "\C\X. countable C \ infinite C" +proof - + from infinite_countable_subset[OF X] guess f .. + then show ?thesis + by (intro exI[of _ "range f"]) (auto simp: range_inj_infinite) +qed + lemma countable_all: assumes S: "countable S" shows "(\s\S. P s) \ (\n::nat. from_nat_into S n \ S \ P (from_nat_into S n))"