diff -r d34f0cd62164 -r ee784502aed5 src/HOL/HOLCF/Library/Stream.thy --- a/src/HOL/HOLCF/Library/Stream.thy Tue Aug 02 07:36:58 2011 -0700 +++ b/src/HOL/HOLCF/Library/Stream.thy Tue Aug 02 08:28:34 2011 -0700 @@ -329,10 +329,10 @@ lemma slen_empty [simp]: "#\ = 0" by (simp add: slen_def stream.finite_def zero_enat_def Least_equality) -lemma slen_scons [simp]: "x ~= \ ==> #(x&&xs) = iSuc (#xs)" +lemma slen_scons [simp]: "x ~= \ ==> #(x&&xs) = eSuc (#xs)" apply (case_tac "stream_finite (x && xs)") apply (simp add: slen_def, auto) -apply (simp add: stream.finite_def, auto simp add: iSuc_enat) +apply (simp add: stream.finite_def, auto simp add: eSuc_enat) apply (rule Least_Suc2, auto) (*apply (drule sym)*) (*apply (drule sym scons_eq_UU [THEN iffD1],simp)*) @@ -341,7 +341,7 @@ by (drule stream_finite_lemma1,auto) lemma slen_less_1_eq: "(#x < enat (Suc 0)) = (x = \)" -by (cases x, auto simp add: enat_0 iSuc_enat[THEN sym]) +by (cases x, auto simp add: enat_0 eSuc_enat[THEN sym]) lemma slen_empty_eq: "(#x = 0) = (x = \)" by (cases x, auto) @@ -353,7 +353,7 @@ apply (case_tac "#y") apply simp_all done -lemma slen_iSuc: "#x = iSuc n --> (? a y. x = a&&y & a ~= \ & #y = n)" +lemma slen_eSuc: "#x = eSuc n --> (? a y. x = a&&y & a ~= \ & #y = n)" by (cases x, auto) lemma slen_stream_take_finite [simp]: "#(stream_take n$s) ~= \" @@ -362,15 +362,15 @@ lemma slen_scons_eq_rev: "(#x < enat (Suc (Suc n))) = (!a y. x ~= a && y | a = \ | #y < enat (Suc n))" apply (cases x, auto) apply (simp add: zero_enat_def) - apply (case_tac "#stream") apply (simp_all add: iSuc_enat) - apply (case_tac "#stream") apply (simp_all add: iSuc_enat) + apply (case_tac "#stream") apply (simp_all add: eSuc_enat) + apply (case_tac "#stream") apply (simp_all add: eSuc_enat) done lemma slen_take_lemma4 [rule_format]: "!s. stream_take n$s ~= s --> #(stream_take n$s) = enat n" apply (induct n, auto simp add: enat_0) apply (case_tac "s=UU", simp) -by (drule stream_exhaust_eq [THEN iffD1], auto simp add: iSuc_enat) +by (drule stream_exhaust_eq [THEN iffD1], auto simp add: eSuc_enat) (* lemma stream_take_idempotent [simp]: @@ -398,7 +398,7 @@ apply (case_tac "x=UU", simp) apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) apply (erule_tac x="y" in allE, auto) -apply (simp_all add: not_less iSuc_enat) +apply (simp_all add: not_less eSuc_enat) apply (case_tac "#y") apply simp_all apply (case_tac "x=UU", simp) apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) @@ -448,7 +448,7 @@ apply (case_tac "x=UU", auto simp add: zero_enat_def) apply (drule stream_exhaust_eq [THEN iffD1], auto) apply (erule_tac x="y" in allE, auto) -apply (simp add: not_le) apply (case_tac "#y") apply (simp_all add: iSuc_enat) +apply (simp add: not_le) apply (case_tac "#y") apply (simp_all add: eSuc_enat) by (simp add: iterate_lemma) lemma slen_take_lemma3 [rule_format]: @@ -478,7 +478,7 @@ apply (subgoal_tac "stream_take n$s ~=s") apply (insert slen_take_lemma4 [of n s],auto) apply (cases s, simp) -by (simp add: slen_take_lemma4 iSuc_enat) +by (simp add: slen_take_lemma4 eSuc_enat) (* ----------------------------------------------------------------------- *) (* theorems about smap *) @@ -593,12 +593,12 @@ apply (erule_tac x="k" in allE) apply (erule_tac x="y" in allE,auto) apply (erule_tac x="THE p. Suc p = t" in allE,auto) - apply (simp add: iSuc_def split: enat.splits) - apply (simp add: iSuc_def split: enat.splits) + apply (simp add: eSuc_def split: enat.splits) + apply (simp add: eSuc_def split: enat.splits) apply (simp only: the_equality) - apply (simp add: iSuc_def split: enat.splits) + apply (simp add: eSuc_def split: enat.splits) apply force -apply (simp add: iSuc_def split: enat.splits) +apply (simp add: eSuc_def split: enat.splits) done lemma take_i_rt_len: @@ -696,7 +696,7 @@ by auto lemma singleton_sconc [rule_format, simp]: "x~=UU --> (x && UU) ooo y = x && y" -apply (simp add: sconc_def zero_enat_def iSuc_def split: enat.splits, auto) +apply (simp add: sconc_def zero_enat_def eSuc_def split: enat.splits, auto) apply (rule someI2_ex,auto) apply (rule_tac x="x && y" in exI,auto) apply (simp add: i_rt_Suc_forw) @@ -709,7 +709,7 @@ apply (rule stream_finite_ind [of x],auto) apply (simp add: stream.finite_def) apply (drule slen_take_lemma1,blast) - apply (simp_all add: zero_enat_def iSuc_def split: enat.splits) + apply (simp_all add: zero_enat_def eSuc_def split: enat.splits) apply (erule_tac x="y" in allE,auto) by (rule_tac x="a && w" in exI,auto) @@ -743,7 +743,7 @@ lemma scons_sconc [rule_format,simp]: "a~=UU --> (a && x) ooo y = a && x ooo y" apply (cases "#x",auto) - apply (simp add: sconc_def iSuc_enat) + apply (simp add: sconc_def eSuc_enat) apply (rule someI2_ex) apply (drule ex_sconc, simp) apply (rule someI2_ex, auto) @@ -870,9 +870,9 @@ lemma sconc_finite: "(#x~=\ & #y~=\) = (#(x ooo y)~=\)" apply auto - apply (metis not_Infty_eq slen_sconc_finite1) - apply (metis not_Infty_eq slen_sconc_infinite1) -apply (metis not_Infty_eq slen_sconc_infinite2) + apply (metis not_infinity_eq slen_sconc_finite1) + apply (metis not_infinity_eq slen_sconc_infinite1) +apply (metis not_infinity_eq slen_sconc_infinite2) done (* ----------------------------------------------------------------------- *) @@ -956,7 +956,7 @@ defer 1 apply (simp add: constr_sconc_def del: scons_sconc) apply (case_tac "#s") - apply (simp add: iSuc_enat) + apply (simp add: eSuc_enat) apply (case_tac "a=UU",auto simp del: scons_sconc) apply (simp) apply (simp add: sconc_def)