diff -r 4e72cd222e0b -r ee97b6463cb4 src/HOL/Complex/Complex.thy --- a/src/HOL/Complex/Complex.thy Mon Mar 01 11:52:59 2004 +0100 +++ b/src/HOL/Complex/Complex.thy Mon Mar 01 13:51:21 2004 +0100 @@ -246,13 +246,8 @@ show "0 \ (1::complex)" by (simp add: complex_zero_def complex_one_def) show "(u + v) * w = u * w + v * w" - by (simp add: complex_mult_def complex_add_def left_distrib real_diff_def add_ac) - show "z+u = z+v ==> u=v" - proof - - assume eq: "z+u = z+v" - hence "(-z + z) + u = (-z + z) + v" by (simp only: eq complex_add_assoc) - thus "u = v" by (simp add: complex_add_minus_left complex_add_zero_left) - qed + by (simp add: complex_mult_def complex_add_def left_distrib + diff_minus add_ac) assume neq: "w \ 0" thus "z / w = z * inverse w" by (simp add: complex_divide_def)